Tamari Lattices for Parabolic Quotients of the Symmetric Group

We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinume...

Full description

Bibliographic Details
Main Authors: Henri Mühle, Nathan Williams
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2015-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2534/pdf
_version_ 1797270189281116160
author Henri Mühle
Nathan Williams
author_facet Henri Mühle
Nathan Williams
author_sort Henri Mühle
collection DOAJ
description We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups.
first_indexed 2024-04-25T02:00:19Z
format Article
id doaj.art-15f318ff4666448db7e953f5b590c974
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:00:19Z
publishDate 2015-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-15f318ff4666448db7e953f5b590c9742024-03-07T15:01:26ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502015-01-01DMTCS Proceedings, 27th...Proceedings10.46298/dmtcs.25342534Tamari Lattices for Parabolic Quotients of the Symmetric GroupHenri Mühle0https://orcid.org/0000-0003-1888-7247Nathan Williams1https://orcid.org/0000-0003-2084-6428Laboratoire d'informatique Algorithmique : Fondements et ApplicationsLaboratoire de combinatoire et d'informatique mathématique [Montréal]We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups.https://dmtcs.episciences.org/2534/pdfsymmetric groupparabolic quotientstamari latticenoncrossing partitionsnonnesting partitionsaligned elements231-avoiding permutations[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
spellingShingle Henri Mühle
Nathan Williams
Tamari Lattices for Parabolic Quotients of the Symmetric Group
Discrete Mathematics & Theoretical Computer Science
symmetric group
parabolic quotients
tamari lattice
noncrossing partitions
nonnesting partitions
aligned elements
231-avoiding permutations
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
title Tamari Lattices for Parabolic Quotients of the Symmetric Group
title_full Tamari Lattices for Parabolic Quotients of the Symmetric Group
title_fullStr Tamari Lattices for Parabolic Quotients of the Symmetric Group
title_full_unstemmed Tamari Lattices for Parabolic Quotients of the Symmetric Group
title_short Tamari Lattices for Parabolic Quotients of the Symmetric Group
title_sort tamari lattices for parabolic quotients of the symmetric group
topic symmetric group
parabolic quotients
tamari lattice
noncrossing partitions
nonnesting partitions
aligned elements
231-avoiding permutations
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
url https://dmtcs.episciences.org/2534/pdf
work_keys_str_mv AT henrimuhle tamarilatticesforparabolicquotientsofthesymmetricgroup
AT nathanwilliams tamarilatticesforparabolicquotientsofthesymmetricgroup