Multiscale representations of community structures in attractor neural networks.

Our cognition relies on the ability of the brain to segment hierarchically structured events on multiple scales. Recent evidence suggests that the brain performs this event segmentation based on the structure of state-transition graphs behind sequential experiences. However, the underlying circuit m...

Full description

Bibliographic Details
Main Authors: Tatsuya Haga, Tomoki Fukai
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-08-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1009296
Description
Summary:Our cognition relies on the ability of the brain to segment hierarchically structured events on multiple scales. Recent evidence suggests that the brain performs this event segmentation based on the structure of state-transition graphs behind sequential experiences. However, the underlying circuit mechanisms are poorly understood. In this paper we propose an extended attractor network model for graph-based hierarchical computation which we call the Laplacian associative memory. This model generates multiscale representations for communities (clusters) of associative links between memory items, and the scale is regulated by the heterogenous modulation of inhibitory circuits. We analytically and numerically show that these representations correspond to graph Laplacian eigenvectors, a popular method for graph segmentation and dimensionality reduction. Finally, we demonstrate that our model exhibits chunked sequential activity patterns resembling hippocampal theta sequences. Our model connects graph theory and attractor dynamics to provide a biologically plausible mechanism for abstraction in the brain.
ISSN:1553-734X
1553-7358