Martingale Approach to Derive Lundberg-Type Inequalities

In this paper, we find the upper bound for the tail probability <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">P</mi><mfenced separators="" open="(" close=")"><msub...

Full description

Bibliographic Details
Main Authors: Tautvydas Kuras, Jonas Sprindys, Jonas Šiaulys
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1742
_version_ 1797551329058488320
author Tautvydas Kuras
Jonas Sprindys
Jonas Šiaulys
author_facet Tautvydas Kuras
Jonas Sprindys
Jonas Šiaulys
author_sort Tautvydas Kuras
collection DOAJ
description In this paper, we find the upper bound for the tail probability <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">P</mi><mfenced separators="" open="(" close=")"><msub><mo movablelimits="true" form="prefix">sup</mo><mrow><mi>n</mi><mo>⩾</mo><mn>0</mn></mrow></msub><msubsup><mo>∑</mo><mrow><mi mathvariant="normal">I</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>ξ</mi><mi mathvariant="normal">I</mi></msub><mo>></mo><mi>x</mi></mfenced></mrow></semantics></math></inline-formula> with random summands <inline-formula><math display="inline"><semantics><mrow><msub><mi>ξ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ξ</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></semantics></math></inline-formula> having light-tailed distributions. We find conditions under which the tail probability of supremum of sums can be estimated by quantity <inline-formula><math display="inline"><semantics><mrow><msub><mi>ϱ</mi><mn>1</mn></msub><mo form="prefix">exp</mo><mrow><mo>{</mo><mo>−</mo><msub><mi>ϱ</mi><mn>2</mn></msub><mi>x</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> with some positive constants <inline-formula><math display="inline"><semantics><msub><mi>ϱ</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>ϱ</mi><mn>2</mn></msub></semantics></math></inline-formula>. For the proof we use the martingale approach together with the fundamental Wald’s identity. As the application we derive a few Lundberg-type inequalities for the ultimate ruin probability of the inhomogeneous renewal risk model.
first_indexed 2024-03-10T15:43:08Z
format Article
id doaj.art-15f9a85e07874d1ea7c520579771a4a4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T15:43:08Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-15f9a85e07874d1ea7c520579771a4a42023-11-20T16:37:32ZengMDPI AGMathematics2227-73902020-10-01810174210.3390/math8101742Martingale Approach to Derive Lundberg-Type InequalitiesTautvydas Kuras0Jonas Sprindys1Jonas Šiaulys2Institute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaInstitute of Mathematics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, LithuaniaIn this paper, we find the upper bound for the tail probability <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="double-struck">P</mi><mfenced separators="" open="(" close=")"><msub><mo movablelimits="true" form="prefix">sup</mo><mrow><mi>n</mi><mo>⩾</mo><mn>0</mn></mrow></msub><msubsup><mo>∑</mo><mrow><mi mathvariant="normal">I</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><msub><mi>ξ</mi><mi mathvariant="normal">I</mi></msub><mo>></mo><mi>x</mi></mfenced></mrow></semantics></math></inline-formula> with random summands <inline-formula><math display="inline"><semantics><mrow><msub><mi>ξ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ξ</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo></mrow></semantics></math></inline-formula> having light-tailed distributions. We find conditions under which the tail probability of supremum of sums can be estimated by quantity <inline-formula><math display="inline"><semantics><mrow><msub><mi>ϱ</mi><mn>1</mn></msub><mo form="prefix">exp</mo><mrow><mo>{</mo><mo>−</mo><msub><mi>ϱ</mi><mn>2</mn></msub><mi>x</mi><mo>}</mo></mrow></mrow></semantics></math></inline-formula> with some positive constants <inline-formula><math display="inline"><semantics><msub><mi>ϱ</mi><mn>1</mn></msub></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><msub><mi>ϱ</mi><mn>2</mn></msub></semantics></math></inline-formula>. For the proof we use the martingale approach together with the fundamental Wald’s identity. As the application we derive a few Lundberg-type inequalities for the ultimate ruin probability of the inhomogeneous renewal risk model.https://www.mdpi.com/2227-7390/8/10/1742exponential estimatesupremum of sumstail probabilityrisk modelinhomogeneityruin probability
spellingShingle Tautvydas Kuras
Jonas Sprindys
Jonas Šiaulys
Martingale Approach to Derive Lundberg-Type Inequalities
Mathematics
exponential estimate
supremum of sums
tail probability
risk model
inhomogeneity
ruin probability
title Martingale Approach to Derive Lundberg-Type Inequalities
title_full Martingale Approach to Derive Lundberg-Type Inequalities
title_fullStr Martingale Approach to Derive Lundberg-Type Inequalities
title_full_unstemmed Martingale Approach to Derive Lundberg-Type Inequalities
title_short Martingale Approach to Derive Lundberg-Type Inequalities
title_sort martingale approach to derive lundberg type inequalities
topic exponential estimate
supremum of sums
tail probability
risk model
inhomogeneity
ruin probability
url https://www.mdpi.com/2227-7390/8/10/1742
work_keys_str_mv AT tautvydaskuras martingaleapproachtoderivelundbergtypeinequalities
AT jonassprindys martingaleapproachtoderivelundbergtypeinequalities
AT jonassiaulys martingaleapproachtoderivelundbergtypeinequalities