Inhibition of HDAC8 Reduces the Proliferation of Adult Neural Stem Cells in the Subventricular Zone

In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches—the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by...

Full description

Bibliographic Details
Main Authors: Momoko Fukuda, Yuki Fujita, Yuko Hino, Mitsuyoshi Nakao, Katsuhiko Shirahige, Toshihide Yamashita
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/25/5/2540
Description
Summary:In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches—the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of <i>Hdac8</i> in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.
ISSN:1661-6596
1422-0067