A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows

This paper assesses the feasibility of performing topology optimization of laminar incompressible flows governed by the steady-state Navier–Stokes equations using anisotropic mesh adaptation to achieve a high-fidelity description of all fluid–solid interfaces. The present implementation combines an...

Full description

Bibliographic Details
Main Authors: Wassim Abdel Nour, Joseph Jabbour, Damien Serret, Philippe Meliga, Elie Hachem
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/8/8/232
_version_ 1797584743740473344
author Wassim Abdel Nour
Joseph Jabbour
Damien Serret
Philippe Meliga
Elie Hachem
author_facet Wassim Abdel Nour
Joseph Jabbour
Damien Serret
Philippe Meliga
Elie Hachem
author_sort Wassim Abdel Nour
collection DOAJ
description This paper assesses the feasibility of performing topology optimization of laminar incompressible flows governed by the steady-state Navier–Stokes equations using anisotropic mesh adaptation to achieve a high-fidelity description of all fluid–solid interfaces. The present implementation combines an immersed volume method solving stabilized finite element formulations cast in the variational multiscale (VMS) framework and level-set representations of the fluid–solid interfaces, which are used as an a posteriori anisotropic error estimator to minimize interpolation errors under the constraint of a prescribed number of nodes in the mesh. Numerical results obtained for several two-dimensional problems of power dissipation minimization show that the optimal designs are mesh-independent (although the convergence rate does decreases as the number of nodes increases), agree well with reference results from the literature, and provide superior accuracy over prior studies solved on isotropic meshes (fixed or adaptively refined).
first_indexed 2024-03-10T23:56:56Z
format Article
id doaj.art-15fe436550c645208d937ced55dd3357
institution Directory Open Access Journal
issn 2311-5521
language English
last_indexed 2024-03-10T23:56:56Z
publishDate 2023-08-01
publisher MDPI AG
record_format Article
series Fluids
spelling doaj.art-15fe436550c645208d937ced55dd33572023-11-19T01:04:48ZengMDPI AGFluids2311-55212023-08-018823210.3390/fluids8080232A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid FlowsWassim Abdel Nour0Joseph Jabbour1Damien Serret2Philippe Meliga3Elie Hachem4Mines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS, 06904 Sophia Antipolis, FranceTEMISTh SAS, Technocentre des Florides, 13700 Marignane, FranceTEMISTh SAS, Technocentre des Florides, 13700 Marignane, FranceMines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS, 06904 Sophia Antipolis, FranceMines Paris, PSL University, Centre for Material Forming (CEMEF), UMR CNRS, 06904 Sophia Antipolis, FranceThis paper assesses the feasibility of performing topology optimization of laminar incompressible flows governed by the steady-state Navier–Stokes equations using anisotropic mesh adaptation to achieve a high-fidelity description of all fluid–solid interfaces. The present implementation combines an immersed volume method solving stabilized finite element formulations cast in the variational multiscale (VMS) framework and level-set representations of the fluid–solid interfaces, which are used as an a posteriori anisotropic error estimator to minimize interpolation errors under the constraint of a prescribed number of nodes in the mesh. Numerical results obtained for several two-dimensional problems of power dissipation minimization show that the optimal designs are mesh-independent (although the convergence rate does decreases as the number of nodes increases), agree well with reference results from the literature, and provide superior accuracy over prior studies solved on isotropic meshes (fixed or adaptively refined).https://www.mdpi.com/2311-5521/8/8/232topology optimizationfluid mechanicslevel-set methodanisotropic mesh adaptation
spellingShingle Wassim Abdel Nour
Joseph Jabbour
Damien Serret
Philippe Meliga
Elie Hachem
A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
Fluids
topology optimization
fluid mechanics
level-set method
anisotropic mesh adaptation
title A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
title_full A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
title_fullStr A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
title_full_unstemmed A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
title_short A Stabilized Finite Element Framework for Anisotropic Adaptive Topology Optimization of Incompressible Fluid Flows
title_sort stabilized finite element framework for anisotropic adaptive topology optimization of incompressible fluid flows
topic topology optimization
fluid mechanics
level-set method
anisotropic mesh adaptation
url https://www.mdpi.com/2311-5521/8/8/232
work_keys_str_mv AT wassimabdelnour astabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT josephjabbour astabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT damienserret astabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT philippemeliga astabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT eliehachem astabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT wassimabdelnour stabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT josephjabbour stabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT damienserret stabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT philippemeliga stabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows
AT eliehachem stabilizedfiniteelementframeworkforanisotropicadaptivetopologyoptimizationofincompressiblefluidflows