Co-Immobilization of Superoxide Dismutase with Catalase on Soft Microparticles Formed by Self-Assembly of Amphiphilic Poly(Aspartic Acid)

Through genetic engineering technology, catalase (CAT) and superoxide dismutase (SOD) have been separately fused to an elastin-like polypeptide (ELP). Thus, the enzymes can be purified through phase transition. Hexadecylamine-modified poly(aspartic acid) (HPASP) is able to self-assemble, forming sof...

Full description

Bibliographic Details
Main Authors: Siyu Mao, Rong Li, Wenchen Wang, Wei Feng, Peijun Ji
Format: Article
Language:English
Published: MDPI AG 2017-07-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/7/7/217
Description
Summary:Through genetic engineering technology, catalase (CAT) and superoxide dismutase (SOD) have been separately fused to an elastin-like polypeptide (ELP). Thus, the enzymes can be purified through phase transition. Hexadecylamine-modified poly(aspartic acid) (HPASP) is able to self-assemble, forming soft microparticles. The HPASP microparticles were used to co-immobilize SOD-ELP and CAT-ELP through amidation reaction. Circular dichroism (CD) confirmed that the secondary structures of the co-immobilized enzymes have been preserved. Fluorescence spectra showed that the co-immobilized enzymes exhibited a higher stability than the free enzymes. Dismutation of superoxide by superoxide dismutase (SOD) generates hydrogen peroxide. By using the co-immobilized enzymes (SOD-ELP/CAT-ELP@HPASP), the generated hydrogen peroxide of SOD-ELP can be decomposed in situ by CAT-ELP. Activity assay results demonstrated that the superoxide anion (•O2−) scavenging ability is 63.15 ± 0.75% for SOD-ELP/CAT-ELP@HPASP. The advantages of the approach of enzyme co-immobilization include the fact that the soft support HPASP itself is a polypeptide in nature, the stability of immobilized enzymes is improved, and a high activity has been achieved. Potentially SOD-ELP/CAT-ELP@HPASP can be applied in the cosmetic industry.
ISSN:2073-4344