On the geometry of operator mixing in massless QCD-like theories

Abstract We revisit the operator mixing in massless QCD-like theories. In particular, we address the problem of determining under which conditions a renormalization scheme exists where the renormalized mixing matrix in the coordinate representation, $$Z(x, \mu )$$ Z ( x , μ ) , is diagonalizable to...

Full description

Bibliographic Details
Main Author: Marco Bochicchio
Format: Article
Language:English
Published: SpringerOpen 2021-08-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-021-09543-5
_version_ 1818435246002012160
author Marco Bochicchio
author_facet Marco Bochicchio
author_sort Marco Bochicchio
collection DOAJ
description Abstract We revisit the operator mixing in massless QCD-like theories. In particular, we address the problem of determining under which conditions a renormalization scheme exists where the renormalized mixing matrix in the coordinate representation, $$Z(x, \mu )$$ Z ( x , μ ) , is diagonalizable to all perturbative orders. As a key step, we provide a differential-geometric interpretation of renormalization that allows us to apply the Poincaré-Dulac theorem to the problem above: We interpret a change of renormalization scheme as a (formal) holomorphic gauge transformation, $$-\frac{\gamma (g)}{\beta (g)}$$ - γ ( g ) β ( g ) as a (formal) meromorphic connection with a Fuchsian singularity at $$g=0$$ g = 0 , and $$Z(x,\mu )$$ Z ( x , μ ) as a Wilson line, with $$\gamma (g)=\gamma _0 g^2 + \cdots $$ γ ( g ) = γ 0 g 2 + ⋯ the matrix of the anomalous dimensions and $$\beta (g)=-\beta _0 g^3 +\cdots $$ β ( g ) = - β 0 g 3 + ⋯ the beta function. As a consequence of the Poincaré-Dulac theorem, if the eigenvalues $$\lambda _1, \lambda _2, \ldots $$ λ 1 , λ 2 , … of the matrix $$\frac{\gamma _0}{\beta _0}$$ γ 0 β 0 , in nonincreasing order $$\lambda _1 \ge \lambda _2 \ge \cdots $$ λ 1 ≥ λ 2 ≥ ⋯ , satisfy the nonresonant condition $$\lambda _i -\lambda _j -2k \ne 0$$ λ i - λ j - 2 k ≠ 0 for $$i\le j$$ i ≤ j and k a positive integer, then a renormalization scheme exists where $$-\frac{\gamma (g)}{\beta (g)} = \frac{\gamma _0}{\beta _0} \frac{1}{g}$$ - γ ( g ) β ( g ) = γ 0 β 0 1 g is one-loop exact to all perturbative orders. If in addition $$\frac{\gamma _0}{\beta _0}$$ γ 0 β 0 is diagonalizable, $$Z(x, \mu )$$ Z ( x , μ ) is diagonalizable as well, and the mixing reduces essentially to the multiplicatively renormalizable case. We also classify the remaining cases of operator mixing by the Poincaré–Dulac theorem.
first_indexed 2024-12-14T16:49:50Z
format Article
id doaj.art-16064adf0a414764ac72ef586c24033d
institution Directory Open Access Journal
issn 1434-6044
1434-6052
language English
last_indexed 2024-12-14T16:49:50Z
publishDate 2021-08-01
publisher SpringerOpen
record_format Article
series European Physical Journal C: Particles and Fields
spelling doaj.art-16064adf0a414764ac72ef586c24033d2022-12-21T22:54:04ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-08-018181510.1140/epjc/s10052-021-09543-5On the geometry of operator mixing in massless QCD-like theoriesMarco Bochicchio0Physics Department, INFN Roma1Abstract We revisit the operator mixing in massless QCD-like theories. In particular, we address the problem of determining under which conditions a renormalization scheme exists where the renormalized mixing matrix in the coordinate representation, $$Z(x, \mu )$$ Z ( x , μ ) , is diagonalizable to all perturbative orders. As a key step, we provide a differential-geometric interpretation of renormalization that allows us to apply the Poincaré-Dulac theorem to the problem above: We interpret a change of renormalization scheme as a (formal) holomorphic gauge transformation, $$-\frac{\gamma (g)}{\beta (g)}$$ - γ ( g ) β ( g ) as a (formal) meromorphic connection with a Fuchsian singularity at $$g=0$$ g = 0 , and $$Z(x,\mu )$$ Z ( x , μ ) as a Wilson line, with $$\gamma (g)=\gamma _0 g^2 + \cdots $$ γ ( g ) = γ 0 g 2 + ⋯ the matrix of the anomalous dimensions and $$\beta (g)=-\beta _0 g^3 +\cdots $$ β ( g ) = - β 0 g 3 + ⋯ the beta function. As a consequence of the Poincaré-Dulac theorem, if the eigenvalues $$\lambda _1, \lambda _2, \ldots $$ λ 1 , λ 2 , … of the matrix $$\frac{\gamma _0}{\beta _0}$$ γ 0 β 0 , in nonincreasing order $$\lambda _1 \ge \lambda _2 \ge \cdots $$ λ 1 ≥ λ 2 ≥ ⋯ , satisfy the nonresonant condition $$\lambda _i -\lambda _j -2k \ne 0$$ λ i - λ j - 2 k ≠ 0 for $$i\le j$$ i ≤ j and k a positive integer, then a renormalization scheme exists where $$-\frac{\gamma (g)}{\beta (g)} = \frac{\gamma _0}{\beta _0} \frac{1}{g}$$ - γ ( g ) β ( g ) = γ 0 β 0 1 g is one-loop exact to all perturbative orders. If in addition $$\frac{\gamma _0}{\beta _0}$$ γ 0 β 0 is diagonalizable, $$Z(x, \mu )$$ Z ( x , μ ) is diagonalizable as well, and the mixing reduces essentially to the multiplicatively renormalizable case. We also classify the remaining cases of operator mixing by the Poincaré–Dulac theorem.https://doi.org/10.1140/epjc/s10052-021-09543-5
spellingShingle Marco Bochicchio
On the geometry of operator mixing in massless QCD-like theories
European Physical Journal C: Particles and Fields
title On the geometry of operator mixing in massless QCD-like theories
title_full On the geometry of operator mixing in massless QCD-like theories
title_fullStr On the geometry of operator mixing in massless QCD-like theories
title_full_unstemmed On the geometry of operator mixing in massless QCD-like theories
title_short On the geometry of operator mixing in massless QCD-like theories
title_sort on the geometry of operator mixing in massless qcd like theories
url https://doi.org/10.1140/epjc/s10052-021-09543-5
work_keys_str_mv AT marcobochicchio onthegeometryofoperatormixinginmasslessqcdliketheories