Phage Engineering for Targeted Multidrug-Resistant <i>Escherichia coli</i>
The lytic bacteriophages have potential application value in the treatment of bacterial infections. However, the narrow host spectrum of these phages limits their range of clinical application. Here, we demonstrate the use of scarless Cas9-assisted recombination (no-SCAR) gene-editing technology to...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/24/3/2459 |
Summary: | The lytic bacteriophages have potential application value in the treatment of bacterial infections. However, the narrow host spectrum of these phages limits their range of clinical application. Here, we demonstrate the use of scarless Cas9-assisted recombination (no-SCAR) gene-editing technology to regulate phage–host range. We used phage PHB20 as the scaffold to create agents targeting different multidrug-resistant <i>Escherichia coli</i> by replacing its phage tail fiber gene (ORF40). The engineered phages were polyvalent and capable of infecting both the original host bacteria and new targets. Phage-tail fiber genes can be amplified by PCR to construct a recombinant phage PHB20 library that can deal with multidrug-resistant bacteria in the future. Our results provide a better understanding of phage–host interactions, and we describe new anti-bacterial editing methods. |
---|---|
ISSN: | 1661-6596 1422-0067 |