Effect of Incorporation of Zeolite Containing Silver-Zinc Nanoparticles into Mineral Trioxide Aggregate on Odontogenic Activity of Human Dental Pulp Stem Cells

Statement of the Problem: The stimulation of odontogenic activity is considered an essential property for biomaterials used in vital pulp therapy. Purpose: The present study aimed to evaluate the effect of the incorporation of zeolite containing silver-zinc nanoparticles (Ze-Ag-Zn) into Angelous mi...

Full description

Bibliographic Details
Main Authors: Negin Ghasemi, Sadegh Salarinasab, Reza Rahbarghazi, Samin Sedghi, Paria Davoudi
Format: Article
Language:English
Published: Shiraz University of Medical Sciences 2021-09-01
Series:Journal of Dentistry
Subjects:
Online Access:https://dentjods.sums.ac.ir/article_47200_7c28f43e4f4da60c4edd8fd05c4e845f.pdf
Description
Summary:Statement of the Problem: The stimulation of odontogenic activity is considered an essential property for biomaterials used in vital pulp therapy. Purpose: The present study aimed to evaluate the effect of the incorporation of zeolite containing silver-zinc nanoparticles (Ze-Ag-Zn) into Angelous mineral trioxide aggregate (AMTA) on the odontogenic activity of human dental pulp stem cells (HDPSCs). Materials and Method: In this in vitro study, HDPSCs were treated with 2% wt of synthesized Ze-Ag-Zn particles+AMTA, AMTA and Ze-Ag-Zn disks. The negative control cells did not receive any treatment. Then, cell viability was measured using the MTT assay after 7 and 14 days of the treatment course. The alkaline phosphatase (ALP) activity and calcium ion level were also measured in the supernatant culture media using auto-analyzer kits. The obtained data were analyzed using one-way ANOVA and Student t-test where appropriate. The level of the statistical significance was set at p< 0.05. Results: The results indicated that HDPSCs treated with AMTA and AMTA+Ze-Ag-Zn particles did not show any significant cell death compared with the control cells after 14 days of the treatment course while the ALP activity and calcium ion levels were significantly (p< 0.05) elevated. Also, the addition of AMTA particles to the cell culture media resulted in increased ALP activity and calcium ion level compared with HDPSCs treated with AMTA+ Ze-Ag-Zn particles on day 7 of the treatment course (p< 0.05). Conclusion: It seems that the incorporation of Ze-Ag-Zn particles into AMTA did not have any significant positive effect on the biomineralization properties of AMTA.
ISSN:2345-6485
2345-6418