PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS

PCA (Principal Component Analysis ) are statistical techniques applied to a single set of variables when the researcher is interested in discovering which variables in the setform coherent subset that are relativity independent of one another.Variables that are correlated with one another but largel...

Full description

Bibliographic Details
Main Author: Hermita Bus Umar
Format: Article
Language:English
Published: Andalas University, Faculty of Public Health 2009-03-01
Series:Jurnal Kesehatan Masyarakat Andalas
Online Access:http://jurnal.fkm.unand.ac.id/index.php/jkma/article/view/68
_version_ 1797943211453317120
author Hermita Bus Umar
author_facet Hermita Bus Umar
author_sort Hermita Bus Umar
collection DOAJ
description PCA (Principal Component Analysis ) are statistical techniques applied to a single set of variables when the researcher is interested in discovering which variables in the setform coherent subset that are relativity independent of one another.Variables that are correlated with one another but largely independent of other subset of variables are combined into factors. The Coals of PCA to which each variables is explained by each dimension. Step in PCA include selecting and mean measuring a set of variables, preparing the correlation matrix, extracting a set offactors from the correlation matrixs. Rotating the factor to increase interpretabilitv and interpreting the result.
first_indexed 2024-04-10T20:19:34Z
format Article
id doaj.art-163d3a350d74475f97c2a816c619d243
institution Directory Open Access Journal
issn 1978-3833
2442-6725
language English
last_indexed 2024-04-10T20:19:34Z
publishDate 2009-03-01
publisher Andalas University, Faculty of Public Health
record_format Article
series Jurnal Kesehatan Masyarakat Andalas
spelling doaj.art-163d3a350d74475f97c2a816c619d2432023-01-26T02:25:39ZengAndalas University, Faculty of Public HealthJurnal Kesehatan Masyarakat Andalas1978-38332442-67252009-03-01329710110.24893/jkma.v3i2.6867PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSSHermita Bus UmarPCA (Principal Component Analysis ) are statistical techniques applied to a single set of variables when the researcher is interested in discovering which variables in the setform coherent subset that are relativity independent of one another.Variables that are correlated with one another but largely independent of other subset of variables are combined into factors. The Coals of PCA to which each variables is explained by each dimension. Step in PCA include selecting and mean measuring a set of variables, preparing the correlation matrix, extracting a set offactors from the correlation matrixs. Rotating the factor to increase interpretabilitv and interpreting the result.http://jurnal.fkm.unand.ac.id/index.php/jkma/article/view/68
spellingShingle Hermita Bus Umar
PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
Jurnal Kesehatan Masyarakat Andalas
title PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
title_full PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
title_fullStr PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
title_full_unstemmed PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
title_short PRINCIPAL COMPONENT ANALYSIS (PCA) DAN APLIKASINYA DENGAN SPSS
title_sort principal component analysis pca dan aplikasinya dengan spss
url http://jurnal.fkm.unand.ac.id/index.php/jkma/article/view/68
work_keys_str_mv AT hermitabusumar principalcomponentanalysispcadanaplikasinyadenganspss