Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells

Summary: Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylati...

Full description

Bibliographic Details
Main Authors: Maria R. Depaoli, Felix Karsten, Corina T. Madreiter-Sokolowski, Christiane Klec, Benjamin Gottschalk, Helmut Bischof, Emrah Eroglu, Markus Waldeck-Weiermair, Thomas Simmen, Wolfgang F. Graier, Roland Malli
Format: Article
Language:English
Published: Elsevier 2018-10-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124718314578
_version_ 1819152134718881792
author Maria R. Depaoli
Felix Karsten
Corina T. Madreiter-Sokolowski
Christiane Klec
Benjamin Gottschalk
Helmut Bischof
Emrah Eroglu
Markus Waldeck-Weiermair
Thomas Simmen
Wolfgang F. Graier
Roland Malli
author_facet Maria R. Depaoli
Felix Karsten
Corina T. Madreiter-Sokolowski
Christiane Klec
Benjamin Gottschalk
Helmut Bischof
Emrah Eroglu
Markus Waldeck-Weiermair
Thomas Simmen
Wolfgang F. Graier
Roland Malli
author_sort Maria R. Depaoli
collection DOAJ
description Summary: Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylation in a variety of cancer cell types. This hexokinase-dependent process seems to be reversed upon the removal of glucose or other hexose sugars. Our data further verify that mitochondria in cancer cells have increased ATP consumption. Similar subcellular ATP fluxes occurred in young mouse embryonic fibroblasts (MEFs). However, pancreatic beta cells, senescent MEFs, and MEFs lacking mitofusin 2 displayed completely different mitochondrial ATP dynamics, indicative of increased oxidative phosphorylation. Our findings add perspective to the variability of the cellular bioenergetics and demonstrate that live cell imaging of mitochondrial ATP dynamics is a powerful tool to evaluate metabolic flexibility and heterogeneity at a single-cell level. : Depaoli et al. show that ATP levels, particularly within mitochondria, are affected in a highly dynamic manner by glucose depletion. Different cell types, including cancer cells, show specific mitochondrial ATP responses. These subcellular ATP signals are used to assess metabolic activity and flexibility at the single-cell level. Keywords: aerobic glycolysis, cancer cell metabolism, aging, ATP, bioenergetics, live cell imaging, mitochondria, mitofusin 2, Warburg effect, mitochondrial respiration
first_indexed 2024-12-22T14:44:28Z
format Article
id doaj.art-16479391faa54edabaa3d109d77dcf9b
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-12-22T14:44:28Z
publishDate 2018-10-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-16479391faa54edabaa3d109d77dcf9b2022-12-21T18:22:28ZengElsevierCell Reports2211-12472018-10-01252501512.e3Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single CellsMaria R. Depaoli0Felix Karsten1Corina T. Madreiter-Sokolowski2Christiane Klec3Benjamin Gottschalk4Helmut Bischof5Emrah Eroglu6Markus Waldeck-Weiermair7Thomas Simmen8Wolfgang F. Graier9Roland Malli10Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; Division of Oncology, Research Unit for Long Non-coding RNAs and Genome Editing in Cancer, Medical University of Graz, Stiftingtalstraße 24, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, AustriaDepartment of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, CanadaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, AustriaMolecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; BioTechMed Graz, Mozartgasse 12/II, 8010 Graz, Austria; Corresponding authorSummary: Reprogramming of metabolic pathways determines cell functions and fate. In our work, we have used organelle-targeted ATP biosensors to evaluate cellular metabolic settings with high resolution in real time. Our data indicate that mitochondria dynamically supply ATP for glucose phosphorylation in a variety of cancer cell types. This hexokinase-dependent process seems to be reversed upon the removal of glucose or other hexose sugars. Our data further verify that mitochondria in cancer cells have increased ATP consumption. Similar subcellular ATP fluxes occurred in young mouse embryonic fibroblasts (MEFs). However, pancreatic beta cells, senescent MEFs, and MEFs lacking mitofusin 2 displayed completely different mitochondrial ATP dynamics, indicative of increased oxidative phosphorylation. Our findings add perspective to the variability of the cellular bioenergetics and demonstrate that live cell imaging of mitochondrial ATP dynamics is a powerful tool to evaluate metabolic flexibility and heterogeneity at a single-cell level. : Depaoli et al. show that ATP levels, particularly within mitochondria, are affected in a highly dynamic manner by glucose depletion. Different cell types, including cancer cells, show specific mitochondrial ATP responses. These subcellular ATP signals are used to assess metabolic activity and flexibility at the single-cell level. Keywords: aerobic glycolysis, cancer cell metabolism, aging, ATP, bioenergetics, live cell imaging, mitochondria, mitofusin 2, Warburg effect, mitochondrial respirationhttp://www.sciencedirect.com/science/article/pii/S2211124718314578
spellingShingle Maria R. Depaoli
Felix Karsten
Corina T. Madreiter-Sokolowski
Christiane Klec
Benjamin Gottschalk
Helmut Bischof
Emrah Eroglu
Markus Waldeck-Weiermair
Thomas Simmen
Wolfgang F. Graier
Roland Malli
Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
Cell Reports
title Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
title_full Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
title_fullStr Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
title_full_unstemmed Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
title_short Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells
title_sort real time imaging of mitochondrial atp dynamics reveals the metabolic setting of single cells
url http://www.sciencedirect.com/science/article/pii/S2211124718314578
work_keys_str_mv AT mariardepaoli realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT felixkarsten realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT corinatmadreitersokolowski realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT christianeklec realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT benjamingottschalk realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT helmutbischof realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT emraheroglu realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT markuswaldeckweiermair realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT thomassimmen realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT wolfgangfgraier realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells
AT rolandmalli realtimeimagingofmitochondrialatpdynamicsrevealsthemetabolicsettingofsinglecells