Further results on the total Italian domination number of trees

Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ an...

Full description

Bibliographic Details
Main Authors: Abel Cabrera-Martínez, Andrea Conchado Peiró, Juan Manuel Rueda-Vázquez
Format: Article
Language:English
Published: AIMS Press 2023-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023540?viewType=HTML
_version_ 1797871485651517440
author Abel Cabrera-Martínez
Andrea Conchado Peiró
Juan Manuel Rueda-Vázquez
author_facet Abel Cabrera-Martínez
Andrea Conchado Peiró
Juan Manuel Rueda-Vázquez
author_sort Abel Cabrera-Martínez
collection DOAJ
description Let $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ and if $ \sum_{v\in N(x)}f(v)\geq 1 $ for every vertex $ x\in W_1\cup W_2 $. The total Italian domination number of $ G $, denoted by $ \gamma_{tI}(G) $, is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all total Italian dominating functions $ f $ on $ G $. In this paper, we provide new lower and upper bounds on the total Italian domination number of trees. In particular, we show that if $ T $ is a tree of order $ n(T)\geq 2 $, then the following inequality chains are satisfied. (ⅰ) $ 2\gamma(T)\leq \gamma_{tI}(T)\leq n(T)-\gamma(T)+s(T) $,</p> <p>(ⅱ) $ \frac{n(T)+\gamma(T)+s(T)-l(T)+1}{2}\leq \gamma_{tI}(T)\leq \frac{n(T)+\gamma(T)+l(T)}{2}, $ where $ \gamma(T) $, $ s(T) $ and $ l(T) $ represent the classical domination number, the number of support vertices and the number of leaves of $ T $, respectively. The upper bounds are derived from results obtained for the double domination number of a tree.
first_indexed 2024-04-10T00:44:39Z
format Article
id doaj.art-1658ac6328f44e37bfec8d951caf6737
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-10T00:44:39Z
publishDate 2023-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-1658ac6328f44e37bfec8d951caf67372023-03-14T01:41:18ZengAIMS PressAIMS Mathematics2473-69882023-03-0185106541066410.3934/math.2023540Further results on the total Italian domination number of treesAbel Cabrera-Martínez 0Andrea Conchado Peiró 1Juan Manuel Rueda-Vázquez 21. Universidad de Córdoba, Departamento de Matemáticas, Campus de Rabanales, Spain2. Universitat Politècnica de València, Centre for Quality and Change Management (CQ), Spain1. Universidad de Córdoba, Departamento de Matemáticas, Campus de Rabanales, SpainLet $ f:V(G)\rightarrow \{0, 1, 2\} $ be a function defined from a connected graph $ G $. Let $ W_i = \{x\in V(G): f(x) = i\} $ for every $ i\in \{0, 1, 2\} $. The function $ f $ is called a total Italian dominating function on $ G $ if $ \sum_{v\in N(x)}f(v)\geq 2 $ for every vertex $ x\in W_0 $ and if $ \sum_{v\in N(x)}f(v)\geq 1 $ for every vertex $ x\in W_1\cup W_2 $. The total Italian domination number of $ G $, denoted by $ \gamma_{tI}(G) $, is the minimum weight $ \omega(f) = \sum_{x\in V(G)}f(x) $ among all total Italian dominating functions $ f $ on $ G $. In this paper, we provide new lower and upper bounds on the total Italian domination number of trees. In particular, we show that if $ T $ is a tree of order $ n(T)\geq 2 $, then the following inequality chains are satisfied. (ⅰ) $ 2\gamma(T)\leq \gamma_{tI}(T)\leq n(T)-\gamma(T)+s(T) $,</p> <p>(ⅱ) $ \frac{n(T)+\gamma(T)+s(T)-l(T)+1}{2}\leq \gamma_{tI}(T)\leq \frac{n(T)+\gamma(T)+l(T)}{2}, $ where $ \gamma(T) $, $ s(T) $ and $ l(T) $ represent the classical domination number, the number of support vertices and the number of leaves of $ T $, respectively. The upper bounds are derived from results obtained for the double domination number of a tree.https://www.aimspress.com/article/doi/10.3934/math.2023540?viewType=HTMLtotal italian domination numberdouble domination numberdomination numbertrees
spellingShingle Abel Cabrera-Martínez
Andrea Conchado Peiró
Juan Manuel Rueda-Vázquez
Further results on the total Italian domination number of trees
AIMS Mathematics
total italian domination number
double domination number
domination number
trees
title Further results on the total Italian domination number of trees
title_full Further results on the total Italian domination number of trees
title_fullStr Further results on the total Italian domination number of trees
title_full_unstemmed Further results on the total Italian domination number of trees
title_short Further results on the total Italian domination number of trees
title_sort further results on the total italian domination number of trees
topic total italian domination number
double domination number
domination number
trees
url https://www.aimspress.com/article/doi/10.3934/math.2023540?viewType=HTML
work_keys_str_mv AT abelcabreramartinez furtherresultsonthetotalitaliandominationnumberoftrees
AT andreaconchadopeiro furtherresultsonthetotalitaliandominationnumberoftrees
AT juanmanuelruedavazquez furtherresultsonthetotalitaliandominationnumberoftrees