Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor

Experimental investigations are conducted to determine the mechanism and characteristics of a jet in an L-shape crossflow simulating the radial swirl injector of a lean premixed-prevaporized (LPP) combustor. To simplify the radial flow of the actual injector while ignoring the centrifugal effect, th...

Full description

Bibliographic Details
Main Authors: Myeung Hwan Choi, Jeongwoo An, Jaye Koo
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/9/3360
_version_ 1797504888520835072
author Myeung Hwan Choi
Jeongwoo An
Jaye Koo
author_facet Myeung Hwan Choi
Jeongwoo An
Jaye Koo
author_sort Myeung Hwan Choi
collection DOAJ
description Experimental investigations are conducted to determine the mechanism and characteristics of a jet in an L-shape crossflow simulating the radial swirl injector of a lean premixed-prevaporized (LPP) combustor. To simplify the radial flow of the actual injector while ignoring the centrifugal effect, the L-shaped 2D-channel is used for the crossflow, and water is used as a fuel simulant. The jet breakup is captured using a high-speed camera, and the density gradient magnitude is post-processed to clarify the spray. The Sauter mean diameter (SMD) of the spray is measured via a laser diffraction method with a helium–neon laser optical system (HELOS). The characteristics of the jet in the L-shape crossflow are compared with the characteristics of the jet in a typical crossflow through the flat channel. The results for different outlet heights of the L-shape channel (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) and different injector positions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) are presented. A dimensionless number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>) consisting of a time ratio is introduced to describe the jet characteristics. In a previous work, the spraying tendency was demonstrated for different injector positions. In addition, the effect of the recirculation area on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> was empirically shown. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> determines the size of the recirculation area, and the range of τ determines the jet breakup mechanism inside the L-shape channel. The results of this study present the breakup mechanism of the jet in the L-shape channel flow, which simulates a jet in a radial swirler injector for gas turbine engines. It is expected that these results can be used to assist in designing gas turbine engines with more combustion efficiency.
first_indexed 2024-03-10T04:10:48Z
format Article
id doaj.art-16642f1546ff43269609d9371ddba6e5
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-10T04:10:48Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-16642f1546ff43269609d9371ddba6e52023-11-23T08:10:17ZengMDPI AGEnergies1996-10732022-05-01159336010.3390/en15093360Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine CombustorMyeung Hwan Choi0Jeongwoo An1Jaye Koo2Graduate School, Korea Aerospace University, Goyang 10540, KoreaDepartment of Smart Air Mobility, Korea Aerospace University, Goyang 10540, KoreaSchool of Aerospace Mechanical Engineering, Korea Aerospace University, Goyang 10540, KoreaExperimental investigations are conducted to determine the mechanism and characteristics of a jet in an L-shape crossflow simulating the radial swirl injector of a lean premixed-prevaporized (LPP) combustor. To simplify the radial flow of the actual injector while ignoring the centrifugal effect, the L-shaped 2D-channel is used for the crossflow, and water is used as a fuel simulant. The jet breakup is captured using a high-speed camera, and the density gradient magnitude is post-processed to clarify the spray. The Sauter mean diameter (SMD) of the spray is measured via a laser diffraction method with a helium–neon laser optical system (HELOS). The characteristics of the jet in the L-shape crossflow are compared with the characteristics of the jet in a typical crossflow through the flat channel. The results for different outlet heights of the L-shape channel (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) and different injector positions (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) are presented. A dimensionless number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>) consisting of a time ratio is introduced to describe the jet characteristics. In a previous work, the spraying tendency was demonstrated for different injector positions. In addition, the effect of the recirculation area on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> was empirically shown. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><msub><mi>d</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> determines the size of the recirculation area, and the range of τ determines the jet breakup mechanism inside the L-shape channel. The results of this study present the breakup mechanism of the jet in the L-shape channel flow, which simulates a jet in a radial swirler injector for gas turbine engines. It is expected that these results can be used to assist in designing gas turbine engines with more combustion efficiency.https://www.mdpi.com/1996-1073/15/9/3360jet in crossflowatomizationbreakupradial swirlerSauter mean diameterspray
spellingShingle Myeung Hwan Choi
Jeongwoo An
Jaye Koo
Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
Energies
jet in crossflow
atomization
breakup
radial swirler
Sauter mean diameter
spray
title Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
title_full Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
title_fullStr Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
title_full_unstemmed Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
title_short Breakup Mechanism of a Jet in the L-Shape Crossflow of a Gas Turbine Combustor
title_sort breakup mechanism of a jet in the l shape crossflow of a gas turbine combustor
topic jet in crossflow
atomization
breakup
radial swirler
Sauter mean diameter
spray
url https://www.mdpi.com/1996-1073/15/9/3360
work_keys_str_mv AT myeunghwanchoi breakupmechanismofajetinthelshapecrossflowofagasturbinecombustor
AT jeongwooan breakupmechanismofajetinthelshapecrossflowofagasturbinecombustor
AT jayekoo breakupmechanismofajetinthelshapecrossflowofagasturbinecombustor