Dini’s Theorem for Fuzzy Number-Valued Continuous Functions
This work aims to provide several versions of Dini’s theorem for fuzzy number-valued continuous functions defined on a compact set <i>K</i>. In this context, there is a wide variety of possibilities since, unlike the real line, we can consider different topologies and orders on the set o...
| Päätekijät: | Juan José Font, Sergio Macario, Manuel Sanchis |
|---|---|
| Aineistotyyppi: | Artikkeli |
| Kieli: | English |
| Julkaistu: |
MDPI AG
2024-10-01
|
| Sarja: | Mathematics |
| Aiheet: | |
| Linkit: | https://www.mdpi.com/2227-7390/12/20/3209 |
Samankaltaisia teoksia
-
Best Approximation Results for Fuzzy-Number-Valued Continuous Functions
Tekijä: Juan J. Font, et al.
Julkaistu: (2023-02-01) -
Convergence of Impact Measures and Impact Bundles
Tekijä: Egghe Leo
Julkaistu: (2022-07-01) -
Applications of relative statistical convergence and associated approximation theorem
Tekijä: Lian-Ta Su, et al.
Julkaistu: (2022-11-01) -
A NEW APPROACH TO EGOROV’S THEOREM BY MEANS OF 𝛼𝛽-STATISTICAL IDEAL CONVERGENCE
Tekijä: Sonali Sharma, et al.
Julkaistu: (2022-11-01) -
Endograph Metric and a Version of the Arzelà–Ascoli Theorem for Fuzzy Sets
Tekijä: Juan J. Font, et al.
Julkaistu: (2023-01-01)