Spatio-Temporal Knowledge Graph Based Forest Fire Prediction with Multi Source Heterogeneous Data

Forest fires have frequently occurred and caused great harm to people’s lives. Many researchers use machine learning techniques to predict forest fires by considering spatio-temporal data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source, heterogene...

Full description

Bibliographic Details
Main Authors: Xingtong Ge, Yi Yang, Ling Peng, Luanjie Chen, Weichao Li, Wenyue Zhang, Jiahui Chen
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/14/3496
Description
Summary:Forest fires have frequently occurred and caused great harm to people’s lives. Many researchers use machine learning techniques to predict forest fires by considering spatio-temporal data features. However, it is difficult to efficiently obtain the features from large-scale, multi-source, heterogeneous data. There is a lack of a method that can effectively extract features required by machine learning-based forest fire predictions from multi-source spatio-temporal data. This paper proposes a forest fire prediction method that integrates spatio-temporal knowledge graphs and machine learning models. This method can fuse multi-source heterogeneous spatio-temporal forest fire data by constructing a forest fire semantic ontology and a knowledge graph-based spatio-temporal framework. This paper defines the domain expertise of forest fire analysis as the semantic rules of the knowledge graph. This paper proposes a rule-based reasoning method to obtain the corresponding data for the specific machine learning-based forest fire prediction methods, which are dedicated to tackling the problem with real-time prediction scenarios. This paper performs experiments regarding forest fire predictions based on real-world data in the experimental areas Xichang and Yanyuan in Sichuan province. The results show that the proposed method is beneficial for the fusion of multi-source spatio-temporal data and highly improves the prediction performance in real forest fire prediction scenarios.
ISSN:2072-4292