Bivariant K-theory of locally convex Z-graded algebras
In the present work, we describe some results about the K-theory of Z-graded algebras. First, in the context of C* algebras, we begin with the Pimsner-Voiculescu sequence for crossed products and its generalizations. We will see that there are results analog to these in the context of locally convex...
Main Author: | |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Nacional de Trujillo
2022-07-01
|
Series: | Selecciones Matemáticas |
Subjects: | |
Online Access: | https://revistas.unitru.edu.pe/index.php/SSMM/article/view/4500 |
Summary: | In the present work, we describe some results about the K-theory of Z-graded algebras. First, in the context of C* algebras, we begin with the Pimsner-Voiculescu sequence for crossed products and its generalizations. We will see that there are results analog to these in the context of locally convex algebras and we conclude with results for generalized Weyl algebras. |
---|---|
ISSN: | 2411-1783 |