Hilbert–Schmidt component analysis

We propose a feature extraction algorithm, based on the Hilbert–Schmidt independence criterion (HSIC) and the maximum dependence – minimum redundancy approach. Experiments with classification data sets demonstrate that suggested Hilbert–Schmidt component analysis (HSCA) algorithm in certain cases ma...

Full description

Bibliographic Details
Main Authors: Povilas Daniušis, Pranas Vaitkus, Linas Petkevičius
Format: Article
Language:English
Published: Vilnius University Press 2016-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/14932
_version_ 1818764919097524224
author Povilas Daniušis
Pranas Vaitkus
Linas Petkevičius
author_facet Povilas Daniušis
Pranas Vaitkus
Linas Petkevičius
author_sort Povilas Daniušis
collection DOAJ
description We propose a feature extraction algorithm, based on the Hilbert–Schmidt independence criterion (HSIC) and the maximum dependence – minimum redundancy approach. Experiments with classification data sets demonstrate that suggested Hilbert–Schmidt component analysis (HSCA) algorithm in certain cases may be more efficient than other considered approaches.
first_indexed 2024-12-18T08:09:50Z
format Article
id doaj.art-169de564ee4d495f9354548f9edac860
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-12-18T08:09:50Z
publishDate 2016-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-169de564ee4d495f9354548f9edac8602022-12-21T21:14:55ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2016-12-0157A10.15388/LMR.A.2016.02Hilbert–Schmidt component analysisPovilas Daniušis0Pranas Vaitkus1Linas Petkevičius2Vilnius UniversityVilnius UniversityVilnius UniversityWe propose a feature extraction algorithm, based on the Hilbert–Schmidt independence criterion (HSIC) and the maximum dependence – minimum redundancy approach. Experiments with classification data sets demonstrate that suggested Hilbert–Schmidt component analysis (HSCA) algorithm in certain cases may be more efficient than other considered approaches.https://www.journals.vu.lt/LMR/article/view/14932feature extractiondimensionality reductionHSCAHilbert–Schmidt independence criterionkernel methods
spellingShingle Povilas Daniušis
Pranas Vaitkus
Linas Petkevičius
Hilbert–Schmidt component analysis
Lietuvos Matematikos Rinkinys
feature extraction
dimensionality reduction
HSCA
Hilbert–Schmidt independence criterion
kernel methods
title Hilbert–Schmidt component analysis
title_full Hilbert–Schmidt component analysis
title_fullStr Hilbert–Schmidt component analysis
title_full_unstemmed Hilbert–Schmidt component analysis
title_short Hilbert–Schmidt component analysis
title_sort hilbert schmidt component analysis
topic feature extraction
dimensionality reduction
HSCA
Hilbert–Schmidt independence criterion
kernel methods
url https://www.journals.vu.lt/LMR/article/view/14932
work_keys_str_mv AT povilasdaniusis hilbertschmidtcomponentanalysis
AT pranasvaitkus hilbertschmidtcomponentanalysis
AT linaspetkevicius hilbertschmidtcomponentanalysis