A Comparison of FPGA and GPGPU Designs for Bayesian Occupancy Filters

Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing perf...

Full description

Bibliographic Details
Main Authors: Luis Medina, Miguel Diez-Ochoa, Raul Correal, Sergio Cuenca-Asensi, Alejandro Serrano, Jorge Godoy, Antonio Martínez-Álvarez, Jorge Villagra
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/17/11/2599
Description
Summary:Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.
ISSN:1424-8220