Impact of Nitrogen Nutrition on <i>Cannabis sativa</i>: An Update on the Current Knowledge and Future Prospects

Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism...

Full description

Bibliographic Details
Main Authors: Simone Landi, Roberto Berni, Giorgia Capasso, Jean-Francois Hausman, Gea Guerriero, Sergio Esposito
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/20/22/5803
Description
Summary:Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic &#8216;hub&#8217;&#8212;the phenylpropanoid pathway&#8212;from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (<i>Cannabis sativa</i> L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.
ISSN:1422-0067