A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem

We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-1<x<1\text{,} \\ u(-1)=u(1)=0\text{,} \end{cases} \end{equation*} where $\lambda >0$ is a bifurcation parameter,...

Full description

Bibliographic Details
Main Authors: Shao-Yuan Huang, Kuo-Chih Hung, Shin-Hwa Wang
Format: Article
Language:English
Published: University of Szeged 2019-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7633
_version_ 1827951126910074880
author Shao-Yuan Huang
Kuo-Chih Hung
Shin-Hwa Wang
author_facet Shao-Yuan Huang
Kuo-Chih Hung
Shin-Hwa Wang
author_sort Shao-Yuan Huang
collection DOAJ
description We study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-1<x<1\text{,} \\ u(-1)=u(1)=0\text{,} \end{cases} \end{equation*} where $\lambda >0$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolution parameter, and $\Theta \equiv \left( \sigma _{1},\sigma_{2}\right) $ is an open interval with $0\leq \sigma _{1}<\sigma _{2}\leq \infty $. Under some suitable hypotheses on $f_{\varepsilon }$, we prove that there exists $\varepsilon _{0}\in \Theta $ such that, on the $(\lambda,\|u\|_{\infty })$-plane, the bifurcation curve is S-shaped for $\sigma_{1}<\varepsilon <\varepsilon _{0}$ and is monotone increasing for $\varepsilon _{0}\leq \varepsilon <\sigma _{2}$. We give an application to prove global bifurcation of bifurcation curves for the one-dimensional perturbed Gelfand problem.
first_indexed 2024-04-09T13:36:55Z
format Article
id doaj.art-16c137d32fd64b86b6c5a0098b4a861e
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:36:55Z
publishDate 2019-12-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-16c137d32fd64b86b6c5a0098b4a861e2023-05-09T07:53:10ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752019-12-0120199912510.14232/ejqtde.2019.1.997633A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problemShao-Yuan Huang0Kuo-Chih Hung1Shin-Hwa Wang2Department of Mathematics and Information Education, National Taipei University of Education, Taipei 106, TaiwanFundamental General Education Center, National Chin-Yi University of Technology, TaiwanDepartment of Mathematics, National Tsing Hua University, Hsinchu, TaiwanWe study the global bifurcation and exact multiplicity of positive solutions for \begin{equation*} \begin{cases} u^{\prime \prime }(x)+\lambda f_{\varepsilon }(u)=0\text{,}\; \;-1<x<1\text{,} \\ u(-1)=u(1)=0\text{,} \end{cases} \end{equation*} where $\lambda >0$ is a bifurcation parameter, $\varepsilon \in \Theta $ is an evolution parameter, and $\Theta \equiv \left( \sigma _{1},\sigma_{2}\right) $ is an open interval with $0\leq \sigma _{1}<\sigma _{2}\leq \infty $. Under some suitable hypotheses on $f_{\varepsilon }$, we prove that there exists $\varepsilon _{0}\in \Theta $ such that, on the $(\lambda,\|u\|_{\infty })$-plane, the bifurcation curve is S-shaped for $\sigma_{1}<\varepsilon <\varepsilon _{0}$ and is monotone increasing for $\varepsilon _{0}\leq \varepsilon <\sigma _{2}$. We give an application to prove global bifurcation of bifurcation curves for the one-dimensional perturbed Gelfand problem.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7633global bifurcationmultiparameter problems-shaped bifurcation curveexact multiplicitypositive solution
spellingShingle Shao-Yuan Huang
Kuo-Chih Hung
Shin-Hwa Wang
A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
Electronic Journal of Qualitative Theory of Differential Equations
global bifurcation
multiparameter problem
s-shaped bifurcation curve
exact multiplicity
positive solution
title A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
title_full A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
title_fullStr A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
title_full_unstemmed A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
title_short A global bifurcation theorem for a multiparameter positone problem and its application to the one-dimensional perturbed Gelfand problem
title_sort global bifurcation theorem for a multiparameter positone problem and its application to the one dimensional perturbed gelfand problem
topic global bifurcation
multiparameter problem
s-shaped bifurcation curve
exact multiplicity
positive solution
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7633
work_keys_str_mv AT shaoyuanhuang aglobalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem
AT kuochihhung aglobalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem
AT shinhwawang aglobalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem
AT shaoyuanhuang globalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem
AT kuochihhung globalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem
AT shinhwawang globalbifurcationtheoremforamultiparameterpositoneproblemanditsapplicationtotheonedimensionalperturbedgelfandproblem