Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation

Using variational arguments, we study the existence and multiplicity of solutions for the degenerate nonlocal differential equation $$displaylines{ - MBig(int_Omega |x|^{-ap}|abla u|^p,dxBig)operatorname{div} Big(|x|^{-ap}|abla u|^{p-2}abla uBig) = |x|^{-p(a+1)+c} f(x,u) quad hbox{in } Omega,cr...

Full description

Bibliographic Details
Main Authors: Nguyen Thanh Chung, Hoang Quoc Toan
Format: Article
Language:English
Published: Texas State University 2013-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/148/abstr.html
_version_ 1818760326294798336
author Nguyen Thanh Chung
Hoang Quoc Toan
author_facet Nguyen Thanh Chung
Hoang Quoc Toan
author_sort Nguyen Thanh Chung
collection DOAJ
description Using variational arguments, we study the existence and multiplicity of solutions for the degenerate nonlocal differential equation $$displaylines{ - MBig(int_Omega |x|^{-ap}|abla u|^p,dxBig)operatorname{div} Big(|x|^{-ap}|abla u|^{p-2}abla uBig) = |x|^{-p(a+1)+c} f(x,u) quad hbox{in } Omega,cr u = 0 quad hbox{on } partialOmega, }$$ where $Omega subset mathbb{R}^N$ ($N geq 3$) and the function M may be zero at zero.
first_indexed 2024-12-18T06:56:50Z
format Article
id doaj.art-16c798a953fd4e0daf11de0bc7a4c787
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-18T06:56:50Z
publishDate 2013-06-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-16c798a953fd4e0daf11de0bc7a4c7872022-12-21T21:17:09ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-06-012013148,113Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equationNguyen Thanh ChungHoang Quoc ToanUsing variational arguments, we study the existence and multiplicity of solutions for the degenerate nonlocal differential equation $$displaylines{ - MBig(int_Omega |x|^{-ap}|abla u|^p,dxBig)operatorname{div} Big(|x|^{-ap}|abla u|^{p-2}abla uBig) = |x|^{-p(a+1)+c} f(x,u) quad hbox{in } Omega,cr u = 0 quad hbox{on } partialOmega, }$$ where $Omega subset mathbb{R}^N$ ($N geq 3$) and the function M may be zero at zero.http://ejde.math.txstate.edu/Volumes/2013/148/abstr.htmlDegenerate nonlocal problemsexistence o solutionsmultiplicityvariational methods
spellingShingle Nguyen Thanh Chung
Hoang Quoc Toan
Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
Electronic Journal of Differential Equations
Degenerate nonlocal problems
existence o solutions
multiplicity
variational methods
title Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
title_full Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
title_fullStr Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
title_full_unstemmed Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
title_short Existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
title_sort existence and multiplicity of solutions for a degenerate nonlocal elliptic differential equation
topic Degenerate nonlocal problems
existence o solutions
multiplicity
variational methods
url http://ejde.math.txstate.edu/Volumes/2013/148/abstr.html
work_keys_str_mv AT nguyenthanhchung existenceandmultiplicityofsolutionsforadegeneratenonlocalellipticdifferentialequation
AT hoangquoctoan existenceandmultiplicityofsolutionsforadegeneratenonlocalellipticdifferentialequation