The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator

In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk $ \mathbb{U} = \{z:z\in \mathcal{C}\; \; \text{and}\; \; |z| < 1\}, $ which satisfies the following geometric criterion: $ \begin{equation*} \Re\left(\frac{\m...

Full description

Bibliographic Details
Main Authors: Hari Mohan Srivastava, Timilehin Gideon Shaba, Gangadharan Murugusundaramoorthy, Abbas Kareem Wanas, Georgia Irina Oros
Format: Article
Language:English
Published: AIMS Press 2023-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023016?viewType=HTML
_version_ 1798027974305382400
author Hari Mohan Srivastava
Timilehin Gideon Shaba
Gangadharan Murugusundaramoorthy
Abbas Kareem Wanas
Georgia Irina Oros
author_facet Hari Mohan Srivastava
Timilehin Gideon Shaba
Gangadharan Murugusundaramoorthy
Abbas Kareem Wanas
Georgia Irina Oros
author_sort Hari Mohan Srivastava
collection DOAJ
description In this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk $ \mathbb{U} = \{z:z\in \mathcal{C}\; \; \text{and}\; \; |z| < 1\}, $ which satisfies the following geometric criterion: $ \begin{equation*} \Re\left(\frac{\mathcal{L}_{u, v}^{w}f(z)}{z}(1-e^{-2i\phi}\mu^2z^2)e^{i\phi}\right)>0, \end{equation*} $ where $ z\in \mathbb{U} $, $ 0\leqq \mu\leqq 1 $ and $ \phi\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $, and which is associated with the Hohlov operator $ \mathcal{L}_{u, v}^{w} $. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.
first_indexed 2024-04-11T19:00:23Z
format Article
id doaj.art-16c9394bf0594e6082f939250d011d18
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-11T19:00:23Z
publishDate 2023-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-16c9394bf0594e6082f939250d011d182022-12-22T04:08:03ZengAIMS PressAIMS Mathematics2473-69882023-01-018134036010.3934/math.2023016The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operatorHari Mohan Srivastava0Timilehin Gideon Shaba1Gangadharan Murugusundaramoorthy2Abbas Kareem Wanas3Georgia Irina Oros41. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada 2. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan 3. Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan 4. Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy5. Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria6. Department of Mathematics, VIT University, Vellore 632014, Tamil Nadu, India7. Department of Mathematics, University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq8. Department of Mathematics and Computer Science, University of Oradea, R-410087 Oradea, RomaniaIn this paper, we introduce and study a new subclass of normalized functions that are analytic and univalent in the open unit disk $ \mathbb{U} = \{z:z\in \mathcal{C}\; \; \text{and}\; \; |z| < 1\}, $ which satisfies the following geometric criterion: $ \begin{equation*} \Re\left(\frac{\mathcal{L}_{u, v}^{w}f(z)}{z}(1-e^{-2i\phi}\mu^2z^2)e^{i\phi}\right)>0, \end{equation*} $ where $ z\in \mathbb{U} $, $ 0\leqq \mu\leqq 1 $ and $ \phi\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $, and which is associated with the Hohlov operator $ \mathcal{L}_{u, v}^{w} $. For functions in this class, the coefficient bounds, as well as upper estimates for the Fekete-Szegö functional and the Hankel determinant, are investigated.https://www.aimspress.com/article/doi/10.3934/math.2023016?viewType=HTMLanalytic functionsunivalent functionscoefficient boundsfekete-szegöfunctionalhohlov operatordziok-srivastava operatorsrivastava-wright operatorfekete-szegöinequalityhankel determinantbasic q-calculus(p,q)-variation
spellingShingle Hari Mohan Srivastava
Timilehin Gideon Shaba
Gangadharan Murugusundaramoorthy
Abbas Kareem Wanas
Georgia Irina Oros
The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
AIMS Mathematics
analytic functions
univalent functions
coefficient bounds
fekete-szegöfunctional
hohlov operator
dziok-srivastava operator
srivastava-wright operator
fekete-szegöinequality
hankel determinant
basic q-calculus
(p,q)-variation
title The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
title_full The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
title_fullStr The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
title_full_unstemmed The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
title_short The Fekete-Szegö functional and the Hankel determinant for a certain class of analytic functions involving the Hohlov operator
title_sort fekete szego functional and the hankel determinant for a certain class of analytic functions involving the hohlov operator
topic analytic functions
univalent functions
coefficient bounds
fekete-szegöfunctional
hohlov operator
dziok-srivastava operator
srivastava-wright operator
fekete-szegöinequality
hankel determinant
basic q-calculus
(p,q)-variation
url https://www.aimspress.com/article/doi/10.3934/math.2023016?viewType=HTML
work_keys_str_mv AT harimohansrivastava thefeketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT timilehingideonshaba thefeketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT gangadharanmurugusundaramoorthy thefeketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT abbaskareemwanas thefeketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT georgiairinaoros thefeketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT harimohansrivastava feketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT timilehingideonshaba feketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT gangadharanmurugusundaramoorthy feketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT abbaskareemwanas feketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator
AT georgiairinaoros feketeszegofunctionalandthehankeldeterminantforacertainclassofanalyticfunctionsinvolvingthehohlovoperator