An anthropometric model to estimate neonatal fat mass using air displacement plethysmography

<p>Abstract</p> <p>Background</p> <p>Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to dev...

Full description

Bibliographic Details
Main Authors: Deierlein Andrea L, Thornton John, Hull Holly, Paley Charles, Gallagher Dympna
Format: Article
Language:English
Published: BMC 2012-03-01
Series:Nutrition & Metabolism
Subjects:
Online Access:http://www.nutritionandmetabolism.com/content/9/1/21
_version_ 1818807759757377536
author Deierlein Andrea L
Thornton John
Hull Holly
Paley Charles
Gallagher Dympna
author_facet Deierlein Andrea L
Thornton John
Hull Holly
Paley Charles
Gallagher Dympna
author_sort Deierlein Andrea L
collection DOAJ
description <p>Abstract</p> <p>Background</p> <p>Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD<sup>® </sup>Infant Body Composition System) as the criterion.</p> <p>Methods</p> <p>A total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD<sup>® </sup>were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass.</p> <p>Results</p> <p>The statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)<sup>2 </sup>+ 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R<sup>2 </sup>= 0.81, MSE = 0.08 kg.</p> <p>Conclusions</p> <p>Our anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance.</p>
first_indexed 2024-12-18T19:30:46Z
format Article
id doaj.art-16cb48e01b2049b9a257a7f5aa596d20
institution Directory Open Access Journal
issn 1743-7075
language English
last_indexed 2024-12-18T19:30:46Z
publishDate 2012-03-01
publisher BMC
record_format Article
series Nutrition & Metabolism
spelling doaj.art-16cb48e01b2049b9a257a7f5aa596d202022-12-21T20:55:43ZengBMCNutrition & Metabolism1743-70752012-03-01912110.1186/1743-7075-9-21An anthropometric model to estimate neonatal fat mass using air displacement plethysmographyDeierlein Andrea LThornton JohnHull HollyPaley CharlesGallagher Dympna<p>Abstract</p> <p>Background</p> <p>Current validated neonatal body composition methods are limited/impractical for use outside of a clinical setting because they are labor intensive, time consuming, and require expensive equipment. The purpose of this study was to develop an anthropometric model to estimate neonatal fat mass (kg) using an air displacement plethysmography (PEA POD<sup>® </sup>Infant Body Composition System) as the criterion.</p> <p>Methods</p> <p>A total of 128 healthy term infants, 60 females and 68 males, from a multiethnic cohort were included in the analyses. Gender, race/ethnicity, gestational age, age (in days), anthropometric measurements of weight, length, abdominal circumference, skin-fold thicknesses (triceps, biceps, sub scapular, and thigh), and body composition by PEA POD<sup>® </sup>were collected within 1-3 days of birth. Backward stepwise linear regression was used to determine the model that best predicted neonatal fat mass.</p> <p>Results</p> <p>The statistical model that best predicted neonatal fat mass (kg) was: -0.012 -0.064*gender + 0.024*day of measurement post-delivery -0.150*weight (kg) + 0.055*weight (kg)<sup>2 </sup>+ 0.046*ethnicity + 0.020*sum of three skin-fold thicknesses (triceps, sub scapular, and thigh); R<sup>2 </sup>= 0.81, MSE = 0.08 kg.</p> <p>Conclusions</p> <p>Our anthropometric model explained 81% of the variance in neonatal fat mass. Future studies with a greater variety of neonatal anthropometric measurements may provide equations that explain more of the variance.</p>http://www.nutritionandmetabolism.com/content/9/1/21NeonateFat massAnthropometryAir displacement plethysmography
spellingShingle Deierlein Andrea L
Thornton John
Hull Holly
Paley Charles
Gallagher Dympna
An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
Nutrition & Metabolism
Neonate
Fat mass
Anthropometry
Air displacement plethysmography
title An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
title_full An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
title_fullStr An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
title_full_unstemmed An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
title_short An anthropometric model to estimate neonatal fat mass using air displacement plethysmography
title_sort anthropometric model to estimate neonatal fat mass using air displacement plethysmography
topic Neonate
Fat mass
Anthropometry
Air displacement plethysmography
url http://www.nutritionandmetabolism.com/content/9/1/21
work_keys_str_mv AT deierleinandreal ananthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT thorntonjohn ananthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT hullholly ananthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT paleycharles ananthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT gallagherdympna ananthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT deierleinandreal anthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT thorntonjohn anthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT hullholly anthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT paleycharles anthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography
AT gallagherdympna anthropometricmodeltoestimateneonatalfatmassusingairdisplacementplethysmography