A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts

We test a newly developed instrument prototype which utilizes time-resolved chlorophyll-a fluorescence techniques and fluctuating light to characterize Symbiodiniaceae functional traits across seven different coral species under cultivation as part of ongoing restoration efforts in the Florida Keys....

Full description

Bibliographic Details
Main Authors: Kenneth D. Hoadley, Grant Lockridge, Audrey McQuagge, K. Blue Pahl, Sean Lowry, Sophie Wong, Zachary Craig, Chelsea Petrik, Courtney Klepac, Erinn M. Muller
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-03-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2023.1092202/full
_version_ 1811161600790364160
author Kenneth D. Hoadley
Kenneth D. Hoadley
Grant Lockridge
Audrey McQuagge
Audrey McQuagge
K. Blue Pahl
K. Blue Pahl
Sean Lowry
Sean Lowry
Sophie Wong
Sophie Wong
Sophie Wong
Zachary Craig
Chelsea Petrik
Courtney Klepac
Erinn M. Muller
author_facet Kenneth D. Hoadley
Kenneth D. Hoadley
Grant Lockridge
Audrey McQuagge
Audrey McQuagge
K. Blue Pahl
K. Blue Pahl
Sean Lowry
Sean Lowry
Sophie Wong
Sophie Wong
Sophie Wong
Zachary Craig
Chelsea Petrik
Courtney Klepac
Erinn M. Muller
author_sort Kenneth D. Hoadley
collection DOAJ
description We test a newly developed instrument prototype which utilizes time-resolved chlorophyll-a fluorescence techniques and fluctuating light to characterize Symbiodiniaceae functional traits across seven different coral species under cultivation as part of ongoing restoration efforts in the Florida Keys. While traditional chlorophyll-a fluorescence techniques only provide a handful of algal biometrics, the system and protocol we have developed generates > 1000 dynamic measurements in a short (~11 min) time frame. Resulting ‘high-content’ algal biometric data revealed distinct phenotypes, which broadly corresponded to genus-level Symbiodiniaceae designations determined using quantitative PCR. Next, algal biometric data from Acropora cervicornis (10 genotypes) and A. palmata (5 genotypes) coral fragments was correlated with bleaching response metrics collected after a two month-long exposure to high temperature. A network analysis identified 1973 correlations (Spearman R > 0.5) between algal biometrics and various bleaching response metrics. These identified biomarkers of thermal stress were then utilized to train a predictive model, and when tested against the same A. cervicornis and A. palmata coral fragments, yielded high correlation (R = 0.92) with measured thermal response (reductions in absorbance by chlorophyll-a). When applied to all seven coral species, the model ranked fragments dominated by Cladocopium or Breviolum symbionts as more bleaching susceptible than corals harboring thermally tolerant symbionts (Durusdinium). While direct testing of bleaching predictions on novel genotypes is still needed, our device and modeling pipeline may help broaden the scalability of existing approaches for determining thermal tolerance in reef corals. Our instrument prototype and analytical pipeline aligns with recent coral restoration assessments that call for the development of novel tools for improving scalability of coral restoration programs.
first_indexed 2024-04-10T06:16:58Z
format Article
id doaj.art-16d7ffdb84a64442843244e73312aab7
institution Directory Open Access Journal
issn 2296-7745
language English
last_indexed 2024-04-10T06:16:58Z
publishDate 2023-03-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Marine Science
spelling doaj.art-16d7ffdb84a64442843244e73312aab72023-03-02T05:50:22ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452023-03-011010.3389/fmars.2023.10922021092202A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbiontsKenneth D. Hoadley0Kenneth D. Hoadley1Grant Lockridge2Audrey McQuagge3Audrey McQuagge4K. Blue Pahl5K. Blue Pahl6Sean Lowry7Sean Lowry8Sophie Wong9Sophie Wong10Sophie Wong11Zachary Craig12Chelsea Petrik13Courtney Klepac14Erinn M. Muller15Dept of Biological Sciences, University of Alabama, Tuscaloosa AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesDept of Biological Sciences, University of Alabama, Tuscaloosa AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesDept of Biological Sciences, University of Alabama, Tuscaloosa AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesDept of Biological Sciences, University of Alabama, Tuscaloosa AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesDept of Biological Sciences, University of Alabama, Tuscaloosa AL, United StatesDauphin Island Sea Lab, Dauphin Island AL, United StatesBiology, University of Virginia, Charlottesville, VA, United StatesMote Marine Laboratory, Summerland Key, FL, United StatesMote Marine Laboratory, Summerland Key, FL, United StatesMote Marine Laboratory, Summerland Key, FL, United StatesMote Marine Laboratory, Sarasota, FL, United StatesWe test a newly developed instrument prototype which utilizes time-resolved chlorophyll-a fluorescence techniques and fluctuating light to characterize Symbiodiniaceae functional traits across seven different coral species under cultivation as part of ongoing restoration efforts in the Florida Keys. While traditional chlorophyll-a fluorescence techniques only provide a handful of algal biometrics, the system and protocol we have developed generates > 1000 dynamic measurements in a short (~11 min) time frame. Resulting ‘high-content’ algal biometric data revealed distinct phenotypes, which broadly corresponded to genus-level Symbiodiniaceae designations determined using quantitative PCR. Next, algal biometric data from Acropora cervicornis (10 genotypes) and A. palmata (5 genotypes) coral fragments was correlated with bleaching response metrics collected after a two month-long exposure to high temperature. A network analysis identified 1973 correlations (Spearman R > 0.5) between algal biometrics and various bleaching response metrics. These identified biomarkers of thermal stress were then utilized to train a predictive model, and when tested against the same A. cervicornis and A. palmata coral fragments, yielded high correlation (R = 0.92) with measured thermal response (reductions in absorbance by chlorophyll-a). When applied to all seven coral species, the model ranked fragments dominated by Cladocopium or Breviolum symbionts as more bleaching susceptible than corals harboring thermally tolerant symbionts (Durusdinium). While direct testing of bleaching predictions on novel genotypes is still needed, our device and modeling pipeline may help broaden the scalability of existing approaches for determining thermal tolerance in reef corals. Our instrument prototype and analytical pipeline aligns with recent coral restoration assessments that call for the development of novel tools for improving scalability of coral restoration programs.https://www.frontiersin.org/articles/10.3389/fmars.2023.1092202/fullcoral bleachingalgal phenotypingSymbiodiniaceaephotobiologychlorophyll a fluorescence
spellingShingle Kenneth D. Hoadley
Kenneth D. Hoadley
Grant Lockridge
Audrey McQuagge
Audrey McQuagge
K. Blue Pahl
K. Blue Pahl
Sean Lowry
Sean Lowry
Sophie Wong
Sophie Wong
Sophie Wong
Zachary Craig
Chelsea Petrik
Courtney Klepac
Erinn M. Muller
A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
Frontiers in Marine Science
coral bleaching
algal phenotyping
Symbiodiniaceae
photobiology
chlorophyll a fluorescence
title A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
title_full A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
title_fullStr A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
title_full_unstemmed A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
title_short A phenomic modeling approach for using chlorophyll-a fluorescence-based measurements on coral photosymbionts
title_sort phenomic modeling approach for using chlorophyll a fluorescence based measurements on coral photosymbionts
topic coral bleaching
algal phenotyping
Symbiodiniaceae
photobiology
chlorophyll a fluorescence
url https://www.frontiersin.org/articles/10.3389/fmars.2023.1092202/full
work_keys_str_mv AT kennethdhoadley aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kennethdhoadley aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT grantlockridge aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT audreymcquagge aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT audreymcquagge aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kbluepahl aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kbluepahl aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT seanlowry aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT seanlowry aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT zacharycraig aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT chelseapetrik aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT courtneyklepac aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT erinnmmuller aphenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kennethdhoadley phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kennethdhoadley phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT grantlockridge phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT audreymcquagge phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT audreymcquagge phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kbluepahl phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT kbluepahl phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT seanlowry phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT seanlowry phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT sophiewong phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT zacharycraig phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT chelseapetrik phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT courtneyklepac phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts
AT erinnmmuller phenomicmodelingapproachforusingchlorophyllafluorescencebasedmeasurementsoncoralphotosymbionts