Exponents for Hamiltonian paths on random bicubic maps and KPZ

We evaluate the configuration exponents of various ensembles of Hamiltonian paths drawn on random planar bicubic maps. These exponents are estimated from the extrapolations of exact enumeration results for finite sizes and compared with their theoretical predictions based on the Knizhnik, Polyakov a...

Full description

Bibliographic Details
Main Authors: Philippe Di Francesco, Bertrand Duplantier, Olivier Golinelli, Emmanuel Guitter
Format: Article
Language:English
Published: Elsevier 2023-02-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S0550321323000135
_version_ 1797897276775989248
author Philippe Di Francesco
Bertrand Duplantier
Olivier Golinelli
Emmanuel Guitter
author_facet Philippe Di Francesco
Bertrand Duplantier
Olivier Golinelli
Emmanuel Guitter
author_sort Philippe Di Francesco
collection DOAJ
description We evaluate the configuration exponents of various ensembles of Hamiltonian paths drawn on random planar bicubic maps. These exponents are estimated from the extrapolations of exact enumeration results for finite sizes and compared with their theoretical predictions based on the Knizhnik, Polyakov and Zamolodchikov (KPZ) relations, as applied to their regular counterpart on the honeycomb lattice. We show that a naive use of these relations does not reproduce the measured exponents but that a simple modification in their application may possibly correct the observed discrepancy. We show that a similar modification is required to reproduce via the KPZ formulas some exactly known exponents for the problem of unweighted fully packed loops on random planar bicubic maps.
first_indexed 2024-04-10T07:56:03Z
format Article
id doaj.art-16dc649aee8046ddae64a2680515cb8e
institution Directory Open Access Journal
issn 0550-3213
language English
last_indexed 2024-04-10T07:56:03Z
publishDate 2023-02-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj.art-16dc649aee8046ddae64a2680515cb8e2023-02-23T04:30:04ZengElsevierNuclear Physics B0550-32132023-02-01987116084Exponents for Hamiltonian paths on random bicubic maps and KPZPhilippe Di Francesco0Bertrand Duplantier1Olivier Golinelli2Emmanuel Guitter3Université Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, France; Department of Mathematics, University of Illinois, Urbana, IL 61821, USAUniversité Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, FranceUniversité Paris-Saclay, CEA, CNRS, Institut de physique théorique, 91191, Gif-sur-Yvette, France; Corresponding author.We evaluate the configuration exponents of various ensembles of Hamiltonian paths drawn on random planar bicubic maps. These exponents are estimated from the extrapolations of exact enumeration results for finite sizes and compared with their theoretical predictions based on the Knizhnik, Polyakov and Zamolodchikov (KPZ) relations, as applied to their regular counterpart on the honeycomb lattice. We show that a naive use of these relations does not reproduce the measured exponents but that a simple modification in their application may possibly correct the observed discrepancy. We show that a similar modification is required to reproduce via the KPZ formulas some exactly known exponents for the problem of unweighted fully packed loops on random planar bicubic maps.http://www.sciencedirect.com/science/article/pii/S0550321323000135
spellingShingle Philippe Di Francesco
Bertrand Duplantier
Olivier Golinelli
Emmanuel Guitter
Exponents for Hamiltonian paths on random bicubic maps and KPZ
Nuclear Physics B
title Exponents for Hamiltonian paths on random bicubic maps and KPZ
title_full Exponents for Hamiltonian paths on random bicubic maps and KPZ
title_fullStr Exponents for Hamiltonian paths on random bicubic maps and KPZ
title_full_unstemmed Exponents for Hamiltonian paths on random bicubic maps and KPZ
title_short Exponents for Hamiltonian paths on random bicubic maps and KPZ
title_sort exponents for hamiltonian paths on random bicubic maps and kpz
url http://www.sciencedirect.com/science/article/pii/S0550321323000135
work_keys_str_mv AT philippedifrancesco exponentsforhamiltonianpathsonrandombicubicmapsandkpz
AT bertrandduplantier exponentsforhamiltonianpathsonrandombicubicmapsandkpz
AT oliviergolinelli exponentsforhamiltonianpathsonrandombicubicmapsandkpz
AT emmanuelguitter exponentsforhamiltonianpathsonrandombicubicmapsandkpz