FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES
ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Bahonar University of Kerman
2018-10-01
|
Series: | Journal of Mahani Mathematical Research |
Subjects: | |
Online Access: | https://jmmrc.uk.ac.ir/article_2203_84113e948dd85a44436a2a8fc35c7fec.pdf |
_version_ | 1797802288122691584 |
---|---|
author | Javad Tayyebi |
author_facet | Javad Tayyebi |
author_sort | Javad Tayyebi |
collection | DOAJ |
description | ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i |
first_indexed | 2024-03-13T05:03:25Z |
format | Article |
id | doaj.art-16f5dc3243794276803d2a65003bb77f |
institution | Directory Open Access Journal |
issn | 2645-4505 |
language | English |
last_indexed | 2024-03-13T05:03:25Z |
publishDate | 2018-10-01 |
publisher | Shahid Bahonar University of Kerman |
record_format | Article |
series | Journal of Mahani Mathematical Research |
spelling | doaj.art-16f5dc3243794276803d2a65003bb77f2023-06-17T04:08:10ZengShahid Bahonar University of KermanJournal of Mahani Mathematical Research2645-45052018-10-0172799410.22103/jmmrc.2018.12807.10722203FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULESJavad Tayyebi0tabrizABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all ihttps://jmmrc.uk.ac.ir/article_2203_84113e948dd85a44436a2a8fc35c7fec.pdfkeywords: local cohomologycofinite moduleminimax moduleassociated primes. 2000 mathematics subject classification |
spellingShingle | Javad Tayyebi FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES Journal of Mahani Mathematical Research keywords: local cohomology cofinite module minimax module associated primes. 2000 mathematics subject classification |
title | FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES |
title_full | FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES |
title_fullStr | FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES |
title_full_unstemmed | FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES |
title_short | FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES |
title_sort | finiteness properties of locale cohomology modules for i j minimax modules |
topic | keywords: local cohomology cofinite module minimax module associated primes. 2000 mathematics subject classification |
url | https://jmmrc.uk.ac.ir/article_2203_84113e948dd85a44436a2a8fc35c7fec.pdf |
work_keys_str_mv | AT javadtayyebi finitenesspropertiesoflocalecohomologymodulesforijminimaxmodules |