Summary: | Freshwater scarcity is a growing concern worldwide due to increasing demand and climate change. A promising method that could provide fresh water is seawater desalination. Presently, both thermal- and membrane-based desalination technologies consume a high amount of specific energy (measured in kWh/m<sup>3</sup>), which limits the use of seawater for drinking purposes. The development of hybrid desalination technologies has the potential to significantly reduce the energy consumption and cost of desalination, making it a more viable solution to address freshwater scarcity. By integrating the advantages of several desalination techniques and eliminating their drawbacks, hybridization can improve system performance. In the current study, a hybrid desalination system was developed by integrating the vacuum membrane distillation (VMD) output into the multi-effect distillation (MED) input. The results indicated a drop in specific thermal energy consumption (STEC) at various feed flow rates and a decrease in STEC in hybrid mode compared to stand-alone VMD.
|