Advances in Waterborne Polyurethane and Polyurethane-Urea Dispersions and Their Eco-friendly Derivatives: A Review

Polyurethanes and polyurethane-ureas, particularly their water-based dispersions, have gained relevance as an extremely versatile area based on environmentally friendly approaches. The evolution of their synthesis methods, and the nature of the reactants (or compounds involved in the process) toward...

Full description

Bibliographic Details
Main Authors: Arantzazu Santamaria-Echart, Isabel Fernandes, Filomena Barreiro, Maria Angeles Corcuera, Arantxa Eceiza
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/3/409
Description
Summary:Polyurethanes and polyurethane-ureas, particularly their water-based dispersions, have gained relevance as an extremely versatile area based on environmentally friendly approaches. The evolution of their synthesis methods, and the nature of the reactants (or compounds involved in the process) towards increasingly sustainable pathways, has positioned these dispersions as a relevant and essential product for diverse application frameworks. Therefore, in this work, it is intended to show the progress in the field of polyurethane and polyurethane-urea dispersions over decades, since their initial synthesis approaches. Thus, the review covers from the basic concepts of polyurethane chemistry to the evolution of the dispersion’s preparation strategies. Moreover, an analysis of the recent trends of using renewable reactants and enhanced green strategies, including the current legislation, directed to limit the toxicity and potentiate the sustainability of dispersions, is described. The review also highlights the strengths of the dispersions added with diverse renewable additives, namely, cellulose, starch or chitosan, providing some noteworthy results. Similarly, dispersion’s potential to be processed by diverse methods is shown, evidencing, with different examples, their suitability in a variety of scenarios, outstanding their versatility even for high requirement applications.
ISSN:2073-4360