Complex symmetric Toeplitz operators on the generalized derivative Hardy space

Abstract The generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ consists of all functions whose derivatives are in the Hardy and Bergman spaces as follows: for positive integers α, β, S α , β 2 ( D ) = { f ∈ H ( D ) : ∥ f ∥ S α , β 2 2 = ∥ f ∥ H 2 2 + α + β α β ∥...

Full description

Bibliographic Details
Main Authors: Eungil Ko, Ji Eun Lee, Jongrak Lee
Format: Article
Language:English
Published: SpringerOpen 2022-06-01
Series:Journal of Inequalities and Applications
Online Access:https://doi.org/10.1186/s13660-022-02810-3
_version_ 1818553412367679488
author Eungil Ko
Ji Eun Lee
Jongrak Lee
author_facet Eungil Ko
Ji Eun Lee
Jongrak Lee
author_sort Eungil Ko
collection DOAJ
description Abstract The generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ consists of all functions whose derivatives are in the Hardy and Bergman spaces as follows: for positive integers α, β, S α , β 2 ( D ) = { f ∈ H ( D ) : ∥ f ∥ S α , β 2 2 = ∥ f ∥ H 2 2 + α + β α β ∥ f ′ ∥ A 2 2 + 1 α β ∥ f ′ ∥ H 2 2 < ∞ } , $$ S^{2}_{\alpha ,\beta}(\mathbb{D})= \biggl\{ f\in H(\mathbb{D}) : \Vert {f} \Vert ^{2}_{S^{2}_{ \alpha ,\beta}}= \Vert {f} \Vert ^{2}_{H^{2}}+{ \frac{{\alpha +\beta}}{\alpha \beta}} \bigl\Vert {f'} \bigr\Vert ^{2}_{A^{2}}+ \frac{1}{\alpha \beta} \bigl\Vert {f'} \bigr\Vert ^{2}_{H^{2}}< \infty \biggr\} , $$ where H ( D ) $H({\mathbb{D}})$ denotes the space of all functions analytic on the open unit disk D ${\mathbb{D}}$ . In this paper, we study characterizations for Toeplitz operators to be complex symmetric on the generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ with respect to some conjugations C ξ $C_{\xi}$ , C μ , λ $C_{\mu , \lambda}$ . Moreover, for any conjugation C, we consider the necessary and sufficient conditions for complex symmetric Toeplitz operators with the symbol φ of the form φ ( z ) = ∑ n = 1 ∞ φ ˆ ( − n ) ‾ z ‾ n + ∑ n = 0 ∞ φ ˆ ( n ) z n $\varphi (z)=\sum_{n=1}^{\infty}\overline{\hat{\varphi}(-n)} \overline{z}^{n}+\sum_{n=0}^{\infty}\hat{\varphi}(n)z^{n}$ . Next, we also study complex symmetric Toeplitz operators with non-harmonic symbols on the generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ .
first_indexed 2024-12-12T09:25:30Z
format Article
id doaj.art-1718ef0a57ec4cd386a898d1d0935340
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-12T09:25:30Z
publishDate 2022-06-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-1718ef0a57ec4cd386a898d1d09353402022-12-22T00:29:03ZengSpringerOpenJournal of Inequalities and Applications1029-242X2022-06-012022111210.1186/s13660-022-02810-3Complex symmetric Toeplitz operators on the generalized derivative Hardy spaceEungil Ko0Ji Eun Lee1Jongrak Lee2Department of Mathematics, Ewha Womans UniversityDepartment of Mathematics and Statistics, Sejong UniversityDepartment of Mathematics, Sungkyunkwan UniversityAbstract The generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ consists of all functions whose derivatives are in the Hardy and Bergman spaces as follows: for positive integers α, β, S α , β 2 ( D ) = { f ∈ H ( D ) : ∥ f ∥ S α , β 2 2 = ∥ f ∥ H 2 2 + α + β α β ∥ f ′ ∥ A 2 2 + 1 α β ∥ f ′ ∥ H 2 2 < ∞ } , $$ S^{2}_{\alpha ,\beta}(\mathbb{D})= \biggl\{ f\in H(\mathbb{D}) : \Vert {f} \Vert ^{2}_{S^{2}_{ \alpha ,\beta}}= \Vert {f} \Vert ^{2}_{H^{2}}+{ \frac{{\alpha +\beta}}{\alpha \beta}} \bigl\Vert {f'} \bigr\Vert ^{2}_{A^{2}}+ \frac{1}{\alpha \beta} \bigl\Vert {f'} \bigr\Vert ^{2}_{H^{2}}< \infty \biggr\} , $$ where H ( D ) $H({\mathbb{D}})$ denotes the space of all functions analytic on the open unit disk D ${\mathbb{D}}$ . In this paper, we study characterizations for Toeplitz operators to be complex symmetric on the generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ with respect to some conjugations C ξ $C_{\xi}$ , C μ , λ $C_{\mu , \lambda}$ . Moreover, for any conjugation C, we consider the necessary and sufficient conditions for complex symmetric Toeplitz operators with the symbol φ of the form φ ( z ) = ∑ n = 1 ∞ φ ˆ ( − n ) ‾ z ‾ n + ∑ n = 0 ∞ φ ˆ ( n ) z n $\varphi (z)=\sum_{n=1}^{\infty}\overline{\hat{\varphi}(-n)} \overline{z}^{n}+\sum_{n=0}^{\infty}\hat{\varphi}(n)z^{n}$ . Next, we also study complex symmetric Toeplitz operators with non-harmonic symbols on the generalized derivative Hardy space S α , β 2 ( D ) $S^{2}_{\alpha ,\beta}(\mathbb{D})$ .https://doi.org/10.1186/s13660-022-02810-3
spellingShingle Eungil Ko
Ji Eun Lee
Jongrak Lee
Complex symmetric Toeplitz operators on the generalized derivative Hardy space
Journal of Inequalities and Applications
title Complex symmetric Toeplitz operators on the generalized derivative Hardy space
title_full Complex symmetric Toeplitz operators on the generalized derivative Hardy space
title_fullStr Complex symmetric Toeplitz operators on the generalized derivative Hardy space
title_full_unstemmed Complex symmetric Toeplitz operators on the generalized derivative Hardy space
title_short Complex symmetric Toeplitz operators on the generalized derivative Hardy space
title_sort complex symmetric toeplitz operators on the generalized derivative hardy space
url https://doi.org/10.1186/s13660-022-02810-3
work_keys_str_mv AT eungilko complexsymmetrictoeplitzoperatorsonthegeneralizedderivativehardyspace
AT jieunlee complexsymmetrictoeplitzoperatorsonthegeneralizedderivativehardyspace
AT jongraklee complexsymmetrictoeplitzoperatorsonthegeneralizedderivativehardyspace