On the Bootstrap for Persistence Diagrams and Landscapes

<p>Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separa...

Full description

Bibliographic Details
Main Authors: F. Chazal, B.T. Fasy, F. Lecci, A. Rinaldo, A. Singh, L. Wasserman
Format: Article
Language:English
Published: Yaroslavl State University 2013-01-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:http://mais-journal.ru/jour/article/view/162
_version_ 1828081609198272512
author F. Chazal
B.T. Fasy
F. Lecci
A. Rinaldo
A. Singh
L. Wasserman
author_facet F. Chazal
B.T. Fasy
F. Lecci
A. Rinaldo
A. Singh
L. Wasserman
author_sort F. Chazal
collection DOAJ
description <p>Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence diagrams and confi- dence bands for persistence landscapes.</p><p>The article is published in the author’s wording.</p>
first_indexed 2024-04-11T03:37:25Z
format Article
id doaj.art-171b6f50932f4bfa94d23250232c728d
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-11T03:37:25Z
publishDate 2013-01-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-171b6f50932f4bfa94d23250232c728d2023-01-02T04:37:11ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172013-01-01206111120156On the Bootstrap for Persistence Diagrams and LandscapesF. Chazal0B.T. Fasy1F. Lecci2A. Rinaldo3A. Singh4L. Wasserman5Geometrica INRIA SaclayУниверситет ТулейнУниверситет Карнеги-МеллонУниверситет Карнеги-МеллонУниверситет Карнеги-МеллонУниверситет Карнеги-Меллон<p>Persistent homology probes topological properties from point clouds and functions. By looking at multiple scales simultaneously, one can record the births and deaths of topological features as the scale varies. In this paper we use a statistical technique, the empirical bootstrap, to separate topological signal from topological noise. In particular, we derive confidence sets for persistence diagrams and confi- dence bands for persistence landscapes.</p><p>The article is published in the author’s wording.</p>http://mais-journal.ru/jour/article/view/162устойчивые гомологиизагрузчиктопологический анализ данных
spellingShingle F. Chazal
B.T. Fasy
F. Lecci
A. Rinaldo
A. Singh
L. Wasserman
On the Bootstrap for Persistence Diagrams and Landscapes
Моделирование и анализ информационных систем
устойчивые гомологии
загрузчик
топологический анализ данных
title On the Bootstrap for Persistence Diagrams and Landscapes
title_full On the Bootstrap for Persistence Diagrams and Landscapes
title_fullStr On the Bootstrap for Persistence Diagrams and Landscapes
title_full_unstemmed On the Bootstrap for Persistence Diagrams and Landscapes
title_short On the Bootstrap for Persistence Diagrams and Landscapes
title_sort on the bootstrap for persistence diagrams and landscapes
topic устойчивые гомологии
загрузчик
топологический анализ данных
url http://mais-journal.ru/jour/article/view/162
work_keys_str_mv AT fchazal onthebootstrapforpersistencediagramsandlandscapes
AT btfasy onthebootstrapforpersistencediagramsandlandscapes
AT flecci onthebootstrapforpersistencediagramsandlandscapes
AT arinaldo onthebootstrapforpersistencediagramsandlandscapes
AT asingh onthebootstrapforpersistencediagramsandlandscapes
AT lwasserman onthebootstrapforpersistencediagramsandlandscapes