Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case
This is the second part of a two-part paper considering a measurement network design based on a stochastic Lagrangian particle dispersion model (LPDM) developed by Marek Uliasz, in this case for South Africa. A sensitivity analysis was performed for different specifications of the network design par...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2015-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/15/2051/2015/acp-15-2051-2015.pdf |
_version_ | 1819082812974694400 |
---|---|
author | A. Nickless T. Ziehn P.J. Rayner R.J. Scholes F. Engelbrecht |
author_facet | A. Nickless T. Ziehn P.J. Rayner R.J. Scholes F. Engelbrecht |
author_sort | A. Nickless |
collection | DOAJ |
description | This is the second part of a two-part paper considering a measurement network
design based on a stochastic Lagrangian particle dispersion model (LPDM) developed
by Marek Uliasz, in this case for South Africa.
A sensitivity analysis was performed for different specifications of the
network design parameters which were applied to this South African test case.
The LPDM, which can be used to derive the sensitivity matrix used in an
atmospheric inversion, was run for each candidate station for the months of
July (representative of the Southern Hemisphere winter) and January (summer).
The network optimisation procedure was carried out under a standard set of
conditions, similar to those applied to the Australian test case in Part 1,
for both months and for the combined 2 months, using the incremental
optimisation (IO) routine. The optimal network design setup was subtly
changed, one parameter at a time, and the optimisation routine was re-run under
each set of modified conditions and compared to the original optimal network
design. The assessment of the similarity between network solutions showed
that changing the height of the surface grid cells, including an uncertainty
estimate for the ocean fluxes, or increasing the night-time observation error
uncertainty did not result in any significant changes in the positioning of
the stations relative to the standard design. However, changing the prior
flux error covariance matrix, or increasing the spatial resolution, did.
<br><br>
Large aggregation errors were calculated for a number of candidate
measurement sites using the resolution of the standard network design.
Spatial resolution of the prior fluxes should be kept as close to the
resolution of the transport model as the computing system can manage, to
mitigate the exclusion of sites which could potentially be beneficial to the
network. Including a generic correlation structure in the prior flux error
covariance matrix led to pronounced changes in the network solution. The
genetic algorithm (GA) was able to find a marginally better solution than the
IO procedure, increasing uncertainty reduction by 0.3 %, but still included
the most influential stations from the standard network design. In addition,
the computational cost of the GA compared to IO was much higher. Overall the
results suggest that a good improvement in knowledge of South African fluxes
is available from a feasible atmospheric network, and that the general
features of this network are invariable under several reasonable choices in
a network design study. |
first_indexed | 2024-12-21T20:22:38Z |
format | Article |
id | doaj.art-171b9595b5c84edea8fecef6c31c1252 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-21T20:22:38Z |
publishDate | 2015-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-171b9595b5c84edea8fecef6c31c12522022-12-21T18:51:27ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242015-02-011542051206910.5194/acp-15-2051-2015Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test caseA. Nickless0T. Ziehn1P.J. Rayner2R.J. Scholes3F. Engelbrecht4Global Change and Ecosystem Dynamics, CSIR, Pretoria, 0005, South AfricaCentre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, VIC 3195, AustraliaSchool of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, AustraliaGlobal Change and Ecosystem Dynamics, CSIR, Pretoria, 0005, South AfricaClimate Studies and Modelling and Environmental Health, CSIR, Pretoria, 0005, South AfricaThis is the second part of a two-part paper considering a measurement network design based on a stochastic Lagrangian particle dispersion model (LPDM) developed by Marek Uliasz, in this case for South Africa. A sensitivity analysis was performed for different specifications of the network design parameters which were applied to this South African test case. The LPDM, which can be used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candidate station for the months of July (representative of the Southern Hemisphere winter) and January (summer). The network optimisation procedure was carried out under a standard set of conditions, similar to those applied to the Australian test case in Part 1, for both months and for the combined 2 months, using the incremental optimisation (IO) routine. The optimal network design setup was subtly changed, one parameter at a time, and the optimisation routine was re-run under each set of modified conditions and compared to the original optimal network design. The assessment of the similarity between network solutions showed that changing the height of the surface grid cells, including an uncertainty estimate for the ocean fluxes, or increasing the night-time observation error uncertainty did not result in any significant changes in the positioning of the stations relative to the standard design. However, changing the prior flux error covariance matrix, or increasing the spatial resolution, did. <br><br> Large aggregation errors were calculated for a number of candidate measurement sites using the resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as close to the resolution of the transport model as the computing system can manage, to mitigate the exclusion of sites which could potentially be beneficial to the network. Including a generic correlation structure in the prior flux error covariance matrix led to pronounced changes in the network solution. The genetic algorithm (GA) was able to find a marginally better solution than the IO procedure, increasing uncertainty reduction by 0.3 %, but still included the most influential stations from the standard network design. In addition, the computational cost of the GA compared to IO was much higher. Overall the results suggest that a good improvement in knowledge of South African fluxes is available from a feasible atmospheric network, and that the general features of this network are invariable under several reasonable choices in a network design study.http://www.atmos-chem-phys.net/15/2051/2015/acp-15-2051-2015.pdf |
spellingShingle | A. Nickless T. Ziehn P.J. Rayner R.J. Scholes F. Engelbrecht Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case Atmospheric Chemistry and Physics |
title | Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case |
title_full | Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case |
title_fullStr | Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case |
title_full_unstemmed | Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case |
title_short | Greenhouse gas network design using backward Lagrangian particle dispersion modelling – Part 2: Sensitivity analyses and South African test case |
title_sort | greenhouse gas network design using backward lagrangian particle dispersion modelling ndash part 2 sensitivity analyses and south african test case |
url | http://www.atmos-chem-phys.net/15/2051/2015/acp-15-2051-2015.pdf |
work_keys_str_mv | AT anickless greenhousegasnetworkdesignusingbackwardlagrangianparticledispersionmodellingndashpart2sensitivityanalysesandsouthafricantestcase AT tziehn greenhousegasnetworkdesignusingbackwardlagrangianparticledispersionmodellingndashpart2sensitivityanalysesandsouthafricantestcase AT pjrayner greenhousegasnetworkdesignusingbackwardlagrangianparticledispersionmodellingndashpart2sensitivityanalysesandsouthafricantestcase AT rjscholes greenhousegasnetworkdesignusingbackwardlagrangianparticledispersionmodellingndashpart2sensitivityanalysesandsouthafricantestcase AT fengelbrecht greenhousegasnetworkdesignusingbackwardlagrangianparticledispersionmodellingndashpart2sensitivityanalysesandsouthafricantestcase |