Study on Sintering Mechanism of Stainless Steel Fiber Felts by X-ray Computed Tomography

The microstructure evolution of Fe-17 wt. % Cr-12 wt. % Ni-2 wt. % Mo stainless steel fiber felts during the fast sintering process was investigated by the synchrotron radiation X-ray computed tomography technique. The equation of dynamics of stable inter-fiber neck growth was established for the fi...

Full description

Bibliographic Details
Main Authors: Jun Ma, Aijun Li, Huiping Tang
Format: Article
Language:English
Published: MDPI AG 2016-01-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/6/1/18
Description
Summary:The microstructure evolution of Fe-17 wt. % Cr-12 wt. % Ni-2 wt. % Mo stainless steel fiber felts during the fast sintering process was investigated by the synchrotron radiation X-ray computed tomography technique. The equation of dynamics of stable inter-fiber neck growth was established for the first time based on the geometry model of sintering joints of two fibers and Kucsynski’s two-sphere model. The specific evolutions of different kinds of sintering joints were observed in the three-dimensional images. The sintering mechanisms during sintering were proposed as plastic flow and grain boundary diffusion, the former leading to a quick growth of sintering joints.
ISSN:2075-4701