Functionalized iron oxide nanoparticles: synthesis through ultrasonic-assisted co-precipitation and performance as hyperthermic agents for biomedical applications

Dual-functional iron oxide nanoparticles (IONPs), displaying self-heating and antibacterial effects are highly desired for biomedical application. This study involved the synthesis of functionalized IONPs coated with 3-aminopropyltriethoxysilane and polyethylene glycol via ultrasonic-assisted co-pre...

Full description

Bibliographic Details
Main Authors: L.M. AL-Harbi, Mohamed S.A. Darwish
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844022009422
Description
Summary:Dual-functional iron oxide nanoparticles (IONPs), displaying self-heating and antibacterial effects are highly desired for biomedical application. This study involved the synthesis of functionalized IONPs coated with 3-aminopropyltriethoxysilane and polyethylene glycol via ultrasonic-assisted co-precipitation technique. The synthesized IONPs were then characterized by using Fourier-transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, scanning electron microscopy, zeta potential, vibrating sample magnetometer and thermogravimetric analysis techniques. In addition, the effect of the synthesized IONPs on bacterial growth (S. aureus and E. coli) was studied. The influence of magnetic field power, as well as the viscous carriers on the heating efficiency of the synthesized IONPs was investigated. The specific absorption rate values increased as the power increased and decreased with the increase in the carrier viscosity. These characteristics render the synthesized iron oxide nanoparticles synthesized in the present study suitable for biomedical application as hyperthermic agents.
ISSN:2405-8440