A Numerical Study on the MHD Ternary Hybrid Nanofluid (Cu-Al2O3-TiO2/H2O) in presence of Thermal Stratification and Radiation across a Vertically Stretching Cylinder in a Porous Medium
The primary objective of this study is to investigate the influence of thermal stratification on the magnetohydrodynamics (MHD) flow of water-based nano, hybrid, and ternary hybrid nanofluids, as they pass a vertically stretching cylinder within a porous media. The nanoparticles Cu, Al2O3, and TiO2...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
V.N. Karazin Kharkiv National University Publishing
2024-03-01
|
Series: | East European Journal of Physics |
Subjects: | |
Online Access: | https://periodicals.karazin.ua/eejp/article/view/23051 |
Summary: | The primary objective of this study is to investigate the influence of thermal stratification on the magnetohydrodynamics (MHD) flow of water-based nano, hybrid, and ternary hybrid nanofluids, as they pass a vertically stretching cylinder within a porous media. The nanoparticles Cu, Al2O3, and TiO2 are suspended in a base fluid H2O, leading to the formation of a ternary hybrid nanofluid (Cu + Al2O3 + TiO2/H2O). The use of a relevant similarity variable has been utilized to simplify the boundary layer equations which control the flow and transform the coupled nonlinear partial differential equations into a collection of nonlinear ordinary differential equations. The numerical results are calculated with the 3-stage Lobatto IIIa approach, specifically implemented by Bvp4c in MATLAB. This study presents a graphical and numerical analysis of the effects of various non-dimensional parameters, such as the Prandtl number, radiation parameter, heat source/sink parameter, magnetic parameter, porosity parameter, curvature parameter, thermal stratification parameter, and thermal buoyancy parameter, on the velocity, temperature, skin-friction coefficient, and Nusselt number. The impacts of these parameters are visually depicted through graphs and quantitatively represented in tables. The ternary hybrid nanofluid has a higher heat transfer rate than the hybrid nanofluid, and the hybrid nanofluids has a higher heat transfer rate than ordinary nanofluids. |
---|---|
ISSN: | 2312-4334 2312-4539 |