Weak localization behavior observed in graphene grown on germanium substrate

Two dimensional electron systems (2DES) usually show the weak localization behavior in consequence of electron interaction in the limited dimension. Distinct from other 2DES, the monolayer graphene, due to the chirality, exhibits unique weak localization behavior sensitive to not only inelastic but...

Full description

Bibliographic Details
Main Authors: Yinbo Sun, Miao Zhang, Linxi Dong, Gaofeng Wang, Xiaoming Xie, Xi Wang, Tao Hu, Zengfeng Di
Format: Article
Language:English
Published: AIP Publishing LLC 2018-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5021875
Description
Summary:Two dimensional electron systems (2DES) usually show the weak localization behavior in consequence of electron interaction in the limited dimension. Distinct from other 2DES, the monolayer graphene, due to the chirality, exhibits unique weak localization behavior sensitive to not only inelastic but also elastic carrier scattering. Grain boundaries, which usually exist in monolayer graphene, are apparently related to the elastic carrier scattering process, thus affecting the weak localization behavior. However, their effect is scarcely studied due to the lack of an ideal platform. Here, a complementary system consisting of both single-crystalline graphene grown on Ge (110) and poly-crystalline graphene grown on Ge (111) is constructed. From the comparison of magnetoresistivity measurements, the weak localization effect is found to be greatly enhanced for the poly-crystalline graphene on Ge(111) compared to the single-crystalline graphene on Ge(110). The degraded transport performance in graphene/Ge(111) is due to the presence of grain boundary in poly-crystalline graphene, which results in the enhanced elastic intervalley scattering. In addition, the inelastic scattering originating from the strong electron-electron interaction at low temperature also contributes to weak localization of poly-crystalline graphene/Ge(111).
ISSN:2158-3226