Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion

Based on the concept of Cauchy pair Τ-filters, we develop an axiomatic theory of completeness for non-symmetric spaces, such as Τ-quasi-uniform (limit) spaces or L-metric spaces. We show that the category of Τ-quasi-Cauchy spaces is topological and Cartesian closed and we construct a finest completi...

Full description

Bibliographic Details
Main Author: Gunther Jäger
Format: Article
Language:English
Published: Universitat Politècnica de València 2023-04-01
Series:Applied General Topology
Subjects:
Online Access:https://polipapers.upv.es/index.php/AGT/article/view/18783
_version_ 1797851625321136128
author Gunther Jäger
author_facet Gunther Jäger
author_sort Gunther Jäger
collection DOAJ
description Based on the concept of Cauchy pair Τ-filters, we develop an axiomatic theory of completeness for non-symmetric spaces, such as Τ-quasi-uniform (limit) spaces or L-metric spaces. We show that the category of Τ-quasi-Cauchy spaces is topological and Cartesian closed and we construct a finest completion for a non-complete Τ-quasi-Cauchy space. In the special case of symmetry, Τ-quasi-Cauchy spaces can be identified with Τ-Cauchy spaces.
first_indexed 2024-04-09T19:20:48Z
format Article
id doaj.art-175cdc8351a64bf59458d796a341f705
institution Directory Open Access Journal
issn 1576-9402
1989-4147
language English
last_indexed 2024-04-09T19:20:48Z
publishDate 2023-04-01
publisher Universitat Politècnica de València
record_format Article
series Applied General Topology
spelling doaj.art-175cdc8351a64bf59458d796a341f7052023-04-05T11:41:08ZengUniversitat Politècnica de ValènciaApplied General Topology1576-94021989-41472023-04-0124120522710.4995/agt.2023.1878317973Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completionGunther Jäger0https://orcid.org/0000-0002-1495-4564University of Applied Sciences Stralsund, GermanyBased on the concept of Cauchy pair Τ-filters, we develop an axiomatic theory of completeness for non-symmetric spaces, such as Τ-quasi-uniform (limit) spaces or L-metric spaces. We show that the category of Τ-quasi-Cauchy spaces is topological and Cartesian closed and we construct a finest completion for a non-complete Τ-quasi-Cauchy space. In the special case of symmetry, Τ-quasi-Cauchy spaces can be identified with Τ-Cauchy spaces.https://polipapers.upv.es/index.php/AGT/article/view/18783fuzzy topologypair τ-filtercuachy pair τ-filterτ-quasi-cauchy spaceτ-quasi-uniform spacel-metric space
spellingShingle Gunther Jäger
Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
Applied General Topology
fuzzy topology
pair τ-filter
cuachy pair τ-filter
τ-quasi-cauchy space
τ-quasi-uniform space
l-metric space
title Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
title_full Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
title_fullStr Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
title_full_unstemmed Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
title_short Τ-quasi-Cauchy spaces - a non-symmetric theory of completeness and completion
title_sort τ quasi cauchy spaces a non symmetric theory of completeness and completion
topic fuzzy topology
pair τ-filter
cuachy pair τ-filter
τ-quasi-cauchy space
τ-quasi-uniform space
l-metric space
url https://polipapers.upv.es/index.php/AGT/article/view/18783
work_keys_str_mv AT guntherjager tquasicauchyspacesanonsymmetrictheoryofcompletenessandcompletion