Застосування експоненціальних функцій в методі зважених нев’язок в структурній механіці на прикладі осесиметричної задачі оболонки
Метод зважених нев’язок набув широкої популярності протягом останніх років, особливо завдяки застосуванню в методах скінчених елементів. Він полягає в наближеному виконанні диференціальних рівнянь, тоді як граничні умови мають виконуватись точно. Ця мета досягається правильним вибором множин пробних...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Igor Sikorsky Kyiv Polytechnic Institute
2020-12-01
|
Series: | Mechanics and Advanced Technologies |
Subjects: | |
Online Access: | http://journal.mmi.kpi.ua/article/view/209618 |
Summary: | Метод зважених нев’язок набув широкої популярності протягом останніх років, особливо завдяки застосуванню в методах скінчених елементів. Він полягає в наближеному виконанні диференціальних рівнянь, тоді як граничні умови мають виконуватись точно. Ця мета досягається правильним вибором множин пробних (базових) функцій, які дають нев’язки. Нев’язки множать на вагові функції та мінімізують, інтегруючи по всій області задачі. Множина пробних і вагових функцій визначає особливість та переваги кожного конкретного методу. Найбільш популярним є вибір пробних і вагових функцій у вигляді тригонометричних або поліноміальних функцій. У двовимірних задачах часто використовуються так звані “балочні функції”, які є рішеннями більш простих одновимірних задач для балки.
В даній методичній роботі ми досліджуємо можливість використання множин функцій, побудованих на послідовних експоненціальних функціях, які точно задовольняють граничним умовам. Метод досліджено на прикладі простої осесиметричної задачі оболонки, точне рішення якої відоме для будь-якого навантаження. Для кількох прикладів розподіленого або концентрованого навантаження запропонований метод порівнюється з аналогічним методом Нав'є, в якому використовуються тригонометричні функції. Також ретельно досліджується правильний вибір вагових функцій. Зазначається, що запропоновані множини симетричних чи антисиметричних експоненціальних функцій мають хорошу перспективу для застосування в більш складних задачах структурної механіки. |
---|---|
ISSN: | 2521-1943 2522-4255 |