Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets

Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability (“g”), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed...

Full description

Bibliographic Details
Main Authors: Max Lam, Joey W. Trampush, Jin Yu, Emma Knowles, Gail Davies, David C. Liewald, John M. Starr, Srdjan Djurovic, Ingrid Melle, Kjetil Sundet, Andrea Christoforou, Ivar Reinvang, Pamela DeRosse, Astri J. Lundervold, Vidar M. Steen, Thomas Espeseth, Katri Räikkönen, Elisabeth Widen, Aarno Palotie, Johan G. Eriksson, Ina Giegling, Bettina Konte, Panos Roussos, Stella Giakoumaki, Katherine E. Burdick, Antony Payton, William Ollier, Ornit Chiba-Falek, Deborah K. Attix, Anna C. Need, Elizabeth T. Cirulli, Aristotle N. Voineskos, Nikos C. Stefanis, Dimitrios Avramopoulos, Alex Hatzimanolis, Dan E. Arking, Nikolaos Smyrnis, Robert M. Bilder, Nelson A. Freimer, Tyrone D. Cannon, Edythe London, Russell A. Poldrack, Fred W. Sabb, Eliza Congdon, Emily Drabant Conley, Matthew A. Scult, Dwight Dickinson, Richard E. Straub, Gary Donohoe, Derek Morris, Aiden Corvin, Michael Gill, Ahmad R. Hariri, Daniel R. Weinberger, Neil Pendleton, Panos Bitsios, Dan Rujescu, Jari Lahti, Stephanie Le Hellard, Matthew C. Keller, Ole A. Andreassen, Ian J. Deary, David C. Glahn, Anil K. Malhotra, Todd Lencz
Format: Article
Language:English
Published: Elsevier 2017-11-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124717316480
_version_ 1818919702923051008
author Max Lam
Joey W. Trampush
Jin Yu
Emma Knowles
Gail Davies
David C. Liewald
John M. Starr
Srdjan Djurovic
Ingrid Melle
Kjetil Sundet
Andrea Christoforou
Ivar Reinvang
Pamela DeRosse
Astri J. Lundervold
Vidar M. Steen
Thomas Espeseth
Katri Räikkönen
Elisabeth Widen
Aarno Palotie
Johan G. Eriksson
Ina Giegling
Bettina Konte
Panos Roussos
Stella Giakoumaki
Katherine E. Burdick
Antony Payton
William Ollier
Ornit Chiba-Falek
Deborah K. Attix
Anna C. Need
Elizabeth T. Cirulli
Aristotle N. Voineskos
Nikos C. Stefanis
Dimitrios Avramopoulos
Alex Hatzimanolis
Dan E. Arking
Nikolaos Smyrnis
Robert M. Bilder
Nelson A. Freimer
Tyrone D. Cannon
Edythe London
Russell A. Poldrack
Fred W. Sabb
Eliza Congdon
Emily Drabant Conley
Matthew A. Scult
Dwight Dickinson
Richard E. Straub
Gary Donohoe
Derek Morris
Aiden Corvin
Michael Gill
Ahmad R. Hariri
Daniel R. Weinberger
Neil Pendleton
Panos Bitsios
Dan Rujescu
Jari Lahti
Stephanie Le Hellard
Matthew C. Keller
Ole A. Andreassen
Ian J. Deary
David C. Glahn
Anil K. Malhotra
Todd Lencz
author_facet Max Lam
Joey W. Trampush
Jin Yu
Emma Knowles
Gail Davies
David C. Liewald
John M. Starr
Srdjan Djurovic
Ingrid Melle
Kjetil Sundet
Andrea Christoforou
Ivar Reinvang
Pamela DeRosse
Astri J. Lundervold
Vidar M. Steen
Thomas Espeseth
Katri Räikkönen
Elisabeth Widen
Aarno Palotie
Johan G. Eriksson
Ina Giegling
Bettina Konte
Panos Roussos
Stella Giakoumaki
Katherine E. Burdick
Antony Payton
William Ollier
Ornit Chiba-Falek
Deborah K. Attix
Anna C. Need
Elizabeth T. Cirulli
Aristotle N. Voineskos
Nikos C. Stefanis
Dimitrios Avramopoulos
Alex Hatzimanolis
Dan E. Arking
Nikolaos Smyrnis
Robert M. Bilder
Nelson A. Freimer
Tyrone D. Cannon
Edythe London
Russell A. Poldrack
Fred W. Sabb
Eliza Congdon
Emily Drabant Conley
Matthew A. Scult
Dwight Dickinson
Richard E. Straub
Gary Donohoe
Derek Morris
Aiden Corvin
Michael Gill
Ahmad R. Hariri
Daniel R. Weinberger
Neil Pendleton
Panos Bitsios
Dan Rujescu
Jari Lahti
Stephanie Le Hellard
Matthew C. Keller
Ole A. Andreassen
Ian J. Deary
David C. Glahn
Anil K. Malhotra
Todd Lencz
author_sort Max Lam
collection DOAJ
description Here, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability (“g”), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum). Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.
first_indexed 2024-12-20T01:10:04Z
format Article
id doaj.art-175db294f4384aa58ea8e8e076c3bded
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-12-20T01:10:04Z
publishDate 2017-11-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-175db294f4384aa58ea8e8e076c3bded2022-12-21T19:58:42ZengElsevierCell Reports2211-12472017-11-012192597261310.1016/j.celrep.2017.11.028Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug TargetsMax Lam0Joey W. Trampush1Jin Yu2Emma Knowles3Gail Davies4David C. Liewald5John M. Starr6Srdjan Djurovic7Ingrid Melle8Kjetil Sundet9Andrea Christoforou10Ivar Reinvang11Pamela DeRosse12Astri J. Lundervold13Vidar M. Steen14Thomas Espeseth15Katri Räikkönen16Elisabeth Widen17Aarno Palotie18Johan G. Eriksson19Ina Giegling20Bettina Konte21Panos Roussos22Stella Giakoumaki23Katherine E. Burdick24Antony Payton25William Ollier26Ornit Chiba-Falek27Deborah K. Attix28Anna C. Need29Elizabeth T. Cirulli30Aristotle N. Voineskos31Nikos C. Stefanis32Dimitrios Avramopoulos33Alex Hatzimanolis34Dan E. Arking35Nikolaos Smyrnis36Robert M. Bilder37Nelson A. Freimer38Tyrone D. Cannon39Edythe London40Russell A. Poldrack41Fred W. Sabb42Eliza Congdon43Emily Drabant Conley44Matthew A. Scult45Dwight Dickinson46Richard E. Straub47Gary Donohoe48Derek Morris49Aiden Corvin50Michael Gill51Ahmad R. Hariri52Daniel R. Weinberger53Neil Pendleton54Panos Bitsios55Dan Rujescu56Jari Lahti57Stephanie Le Hellard58Matthew C. Keller59Ole A. Andreassen60Ian J. Deary61David C. Glahn62Anil K. Malhotra63Todd Lencz64Institute of Mental Health, Singapore, SingaporeBrainWorkup, LLC, Los Angeles, CA, USADivision of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USADepartment of Psychiatry, Yale University School of Medicine, New Haven, CT, USACentre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UKDepartment of Psychology, University of Edinburgh, Edinburgh, UKCentre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UKDepartment of Medical Genetics, Oslo University Hospital, University of Bergen, Oslo, NorwayNORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, NorwayDivision of Mental Health and Addiction, Oslo University Hospital, Oslo, NorwayDr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, NorwayDepartment of Psychology, University of Oslo, Oslo, NorwayDivision of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USADepartment of Biological and Medical Psychology, University of Bergen, Bergen, NorwayNORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, NorwayDivision of Mental Health and Addiction, Oslo University Hospital, Oslo, NorwayInstitute of Behavioural Sciences, University of Helsinki, Helsinki, FinlandInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FinlandInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FinlandDepartment of General Practice, University of Helsinki and Helsinki University Hospital, Helsinki, FinlandDepartment of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, GermanyDepartment of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, GermanyDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USADepartment of Psychology, University of Crete, Crete, GreeceDepartment of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USACentre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UKCentre for Epidemiology, Division of Population Health, Health Services Research & Primary Care, The University of Manchester, Manchester, UKDepartment of Neurology, Bryan Alzheimer’s Disease Research Center and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USADepartment of Neurology, Bryan Alzheimer’s Disease Research Center and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USADivision of Brain Sciences, Department of Medicine, Imperial College, London, UKHuman Longevity Inc., Durham, NC, USACampbell Family Mental Health Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, CanadaDepartment of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, GreeceDepartment of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USADepartment of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, GreeceMcKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USADepartment of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, GreeceUCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USAUCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USADepartment of Psychology, Yale University, New Haven, CT, USAUCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USADepartment of Psychology, Stanford University, Palo Alto, CA, USARobert and Beverly Lewis Center for Neuroimaging, University of Oregon, Eugene, OR, USAUCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA23andMe, Inc., Mountain View, CA, USALaboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USAClinical and Translational Neuroscience Branch, Intramural Research Program, National Institute of Mental Health, National Institute of Health, Bethesda, MD, USALieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USANeuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, IrelandNeuroimaging, Cognition & Genomics (NICOG) Centre, School of Psychology and Discipline of Biochemistry, National University of Ireland, Galway, IrelandNeuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, IrelandNeuropsychiatric Genetics Research Group, Department of Psychiatry and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, IrelandLaboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC, USALieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USADivision of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, UKDepartment of Psychiatry and Behavioral Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, GreeceDepartment of Psychiatry, Martin Luther University of Halle-Wittenberg, Halle, GermanyInstitute of Behavioural Sciences, University of Helsinki, Helsinki, FinlandNORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, NorwayInstitute for Behavioral Genetics, University of Colorado, Boulder, CO, USANORMENT, K.G. Jebsen Centre for Psychosis Research, University of Bergen, Bergen, NorwayCentre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UKDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT, USADivision of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USADivision of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USAHere, we present a large (n = 107,207) genome-wide association study (GWAS) of general cognitive ability (“g”), further enhanced by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with general cognitive ability. Results showed significant enrichment for genes causing Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis implicated the biological processes of neurogenesis and synaptic regulation, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker, and LY97241, a potassium channel inhibitor. Transcriptome-wide and epigenome-wide analysis revealed that the implicated loci were enriched for genes expressed across all brain regions (most strongly in the cerebellum). Enrichment was exclusive to genes expressed in neurons but not oligodendrocytes or astrocytes. Finally, we report genetic correlations between cognitive ability and disparate phenotypes including psychiatric disorders, several autoimmune disorders, longevity, and maternal age at first birth.http://www.sciencedirect.com/science/article/pii/S2211124717316480GWASgeneral cognitive abilitynootropicsgene expressionneurodevelopmentsynapsecalcium channelpotassium channelcerebellum
spellingShingle Max Lam
Joey W. Trampush
Jin Yu
Emma Knowles
Gail Davies
David C. Liewald
John M. Starr
Srdjan Djurovic
Ingrid Melle
Kjetil Sundet
Andrea Christoforou
Ivar Reinvang
Pamela DeRosse
Astri J. Lundervold
Vidar M. Steen
Thomas Espeseth
Katri Räikkönen
Elisabeth Widen
Aarno Palotie
Johan G. Eriksson
Ina Giegling
Bettina Konte
Panos Roussos
Stella Giakoumaki
Katherine E. Burdick
Antony Payton
William Ollier
Ornit Chiba-Falek
Deborah K. Attix
Anna C. Need
Elizabeth T. Cirulli
Aristotle N. Voineskos
Nikos C. Stefanis
Dimitrios Avramopoulos
Alex Hatzimanolis
Dan E. Arking
Nikolaos Smyrnis
Robert M. Bilder
Nelson A. Freimer
Tyrone D. Cannon
Edythe London
Russell A. Poldrack
Fred W. Sabb
Eliza Congdon
Emily Drabant Conley
Matthew A. Scult
Dwight Dickinson
Richard E. Straub
Gary Donohoe
Derek Morris
Aiden Corvin
Michael Gill
Ahmad R. Hariri
Daniel R. Weinberger
Neil Pendleton
Panos Bitsios
Dan Rujescu
Jari Lahti
Stephanie Le Hellard
Matthew C. Keller
Ole A. Andreassen
Ian J. Deary
David C. Glahn
Anil K. Malhotra
Todd Lencz
Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
Cell Reports
GWAS
general cognitive ability
nootropics
gene expression
neurodevelopment
synapse
calcium channel
potassium channel
cerebellum
title Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
title_full Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
title_fullStr Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
title_full_unstemmed Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
title_short Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
title_sort large scale cognitive gwas meta analysis reveals tissue specific neural expression and potential nootropic drug targets
topic GWAS
general cognitive ability
nootropics
gene expression
neurodevelopment
synapse
calcium channel
potassium channel
cerebellum
url http://www.sciencedirect.com/science/article/pii/S2211124717316480
work_keys_str_mv AT maxlam largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT joeywtrampush largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT jinyu largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT emmaknowles largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT gaildavies largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT davidcliewald largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT johnmstarr largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT srdjandjurovic largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT ingridmelle largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT kjetilsundet largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT andreachristoforou largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT ivarreinvang largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT pameladerosse largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT astrijlundervold largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT vidarmsteen largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT thomasespeseth largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT katriraikkonen largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT elisabethwiden largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT aarnopalotie largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT johangeriksson largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT inagiegling largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT bettinakonte largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT panosroussos largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT stellagiakoumaki largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT katherineeburdick largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT antonypayton largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT williamollier largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT ornitchibafalek largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT deborahkattix largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT annacneed largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT elizabethtcirulli largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT aristotlenvoineskos largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT nikoscstefanis largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT dimitriosavramopoulos largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT alexhatzimanolis largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT danearking largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT nikolaossmyrnis largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT robertmbilder largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT nelsonafreimer largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT tyronedcannon largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT edythelondon largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT russellapoldrack largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT fredwsabb largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT elizacongdon largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT emilydrabantconley largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT matthewascult largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT dwightdickinson largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT richardestraub largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT garydonohoe largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT derekmorris largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT aidencorvin largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT michaelgill largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT ahmadrhariri largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT danielrweinberger largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT neilpendleton largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT panosbitsios largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT danrujescu largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT jarilahti largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT stephanielehellard largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT matthewckeller largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT oleaandreassen largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT ianjdeary largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT davidcglahn largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT anilkmalhotra largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets
AT toddlencz largescalecognitivegwasmetaanalysisrevealstissuespecificneuralexpressionandpotentialnootropicdrugtargets