Covering cross-polytopes with smaller homothetic copies

Let $ C_{n} $ be an $ n $-dimensional cross-polytope and $ \Gamma_{p}(C_{n}) $ be the smallest positive number $ \gamma $ such that $ C_{n} $ can be covered by $ p $ translates of $ \gamma C_{n} $. We obtain better estimates of $ \Gamma_{2^n}(C_n) $ for small $ n $ and a universal upper bound of $ \...

Full description

Bibliographic Details
Main Authors: Feifei Chen, Shenghua Gao, Senlin Wu
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024195?viewType=HTML
_version_ 1827357997771259904
author Feifei Chen
Shenghua Gao
Senlin Wu
author_facet Feifei Chen
Shenghua Gao
Senlin Wu
author_sort Feifei Chen
collection DOAJ
description Let $ C_{n} $ be an $ n $-dimensional cross-polytope and $ \Gamma_{p}(C_{n}) $ be the smallest positive number $ \gamma $ such that $ C_{n} $ can be covered by $ p $ translates of $ \gamma C_{n} $. We obtain better estimates of $ \Gamma_{2^n}(C_n) $ for small $ n $ and a universal upper bound of $ \Gamma_{2^n}(C_n) $ for all positive integers $ n $.
first_indexed 2024-03-08T05:56:19Z
format Article
id doaj.art-17622fa70dd34784916f2b092245aad2
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-08T05:56:19Z
publishDate 2024-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-17622fa70dd34784916f2b092245aad22024-02-05T01:19:09ZengAIMS PressAIMS Mathematics2473-69882024-01-01924014402010.3934/math.2024195Covering cross-polytopes with smaller homothetic copiesFeifei Chen0 Shenghua Gao1Senlin Wu2School of Mathematics, North University of China, Taiyuan 030051, ChinaSchool of Mathematics, North University of China, Taiyuan 030051, ChinaSchool of Mathematics, North University of China, Taiyuan 030051, ChinaLet $ C_{n} $ be an $ n $-dimensional cross-polytope and $ \Gamma_{p}(C_{n}) $ be the smallest positive number $ \gamma $ such that $ C_{n} $ can be covered by $ p $ translates of $ \gamma C_{n} $. We obtain better estimates of $ \Gamma_{2^n}(C_n) $ for small $ n $ and a universal upper bound of $ \Gamma_{2^n}(C_n) $ for all positive integers $ n $.https://www.aimspress.com/article/doi/10.3934/math.2024195?viewType=HTMLconvex bodycovering functionalhadwiger's covering conjecturehomothetic copy
spellingShingle Feifei Chen
Shenghua Gao
Senlin Wu
Covering cross-polytopes with smaller homothetic copies
AIMS Mathematics
convex body
covering functional
hadwiger's covering conjecture
homothetic copy
title Covering cross-polytopes with smaller homothetic copies
title_full Covering cross-polytopes with smaller homothetic copies
title_fullStr Covering cross-polytopes with smaller homothetic copies
title_full_unstemmed Covering cross-polytopes with smaller homothetic copies
title_short Covering cross-polytopes with smaller homothetic copies
title_sort covering cross polytopes with smaller homothetic copies
topic convex body
covering functional
hadwiger's covering conjecture
homothetic copy
url https://www.aimspress.com/article/doi/10.3934/math.2024195?viewType=HTML
work_keys_str_mv AT feifeichen coveringcrosspolytopeswithsmallerhomotheticcopies
AT shenghuagao coveringcrosspolytopeswithsmallerhomotheticcopies
AT senlinwu coveringcrosspolytopeswithsmallerhomotheticcopies