Summary: | The control problem of avoidance-path-following is a critical consideration in the research of unmanned surface vehicle (USV) navigation control, and it holds great significance for the navigation safety of USVs. A guidance and control scheme based on finite-distance convergence is proposed in this paper. First, the requirements for the USV to avoid obstacles from the perspective of path-following lateral error are analyzed. Then, a new performance function with finite-distance convergence is proposed to constrain the lateral error. Based on this, a heading guidance law and a backstepping controller are designed to ensure that the lateral error converges to a steady-state value within the prescribed navigation distance and that the stability is maintained, satisfying the requirements of obstacle avoidance for the USV. In addition, an adaptive velocity command is designed to adjust the velocity with the lateral error, which, to a certain extent, avoids the saturation of the heading actuator caused by the large lateral error. Finally, it is proven through theory and simulation that the control algorithm can guide the USV to achieve avoidance-path-following within a limited distance and to avoid obstacles effectively.
|