Reversed HILIC Gradient: A Powerful Strategy for On-Line Comprehensive 2D-LC

The aim of the present work is to evaluate the possibilities and limitations of reversed hydrophilic interaction chromatography (revHILIC) mode in liquid chromatography (LC). This chromatographic mode consists of combining a highly polar stationary phase (bare silica) with a gradient varying from ve...

Full description

Bibliographic Details
Main Authors: Soraya Chapel, Florent Rouvière, Davy Guillarme, Sabine Heinisch
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/9/3907
Description
Summary:The aim of the present work is to evaluate the possibilities and limitations of reversed hydrophilic interaction chromatography (revHILIC) mode in liquid chromatography (LC). This chromatographic mode consists of combining a highly polar stationary phase (bare silica) with a gradient varying from very low (1–5%) to high (40%) acetonitrile content (reversed gradient compared to HILIC). The retention behavior of revHILIC was first compared with that of reversed-phase LC (RPLC) and HILIC using representative mixtures of peptides and pharmaceutical compounds. It appears that the achievable selectivity can be ranked in the order RPLC > revHILIC > HILIC with the two different samples. Next, two-dimensional liquid chromatography (2D-LC) conditions were evaluated by combining RPLC, revHILIC, or HILIC with RPLC in an on-line comprehensive (LC × LC) mode. evHILIC × RPLC not only showed impressive performance in terms of peak capacity and sensitivity, but also provided complementary selectivity compared to RPLC × RPLC and HILIC × RPLC. Indeed, both the elution order and the retention time range differ significantly between the three techniques. In conclusion, there is no doubt that revHILIC should be considered as a viable option for 2D-LC analysis of small molecules and also peptides.
ISSN:1420-3049