Spaces of Bounded Measurable Functions Invariant under a Group Action

In this paper, we characterize spaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-func...

Full description

Bibliographic Details
Main Author: Samuel A. Hokamp
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/11/10/505
Description
Summary:In this paper, we characterize spaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-functions on a compact Hausdorff space that are invariant under a transitive and continuous group action. This work is analogous to established results concerning invariant spaces of continuous and measurable functions on a compact Hausdorff space. The case for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-functions cannot be proved in the same way when endowed with the norm-topology, but a similar argument can be used when the space of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>∞</mo></msup></semantics></math></inline-formula>-functions is given the weak*-topology, as we show in this paper.
ISSN:2075-1680