Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis

Leila Gobejishvili,1 Walter E Rodriguez,1 Philip Bauer,2 Yali Wang,1 Chirag Soni,2 Todd Lydic,3 Shirish Barve,1 Craig McClain,1 Claudio Maldonado4 1Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; 2Endoprotech, Inc., Louisville, KY, USA; 3Lipidomics Center,...

Full description

Bibliographic Details
Main Authors: Gobejishvili L, Rodriguez WE, Bauer P, Wang Y, Soni C, Lydic T, Barve S, McClain C, Maldonado C
Format: Article
Language:English
Published: Dove Medical Press 2022-05-01
Series:Drug Design, Development and Therapy
Subjects:
Online Access:https://www.dovepress.com/novel-liposomal-rolipram-formulation-for-clinical-application-to-reduc-peer-reviewed-fulltext-article-DDDT
_version_ 1817981761629454336
author Gobejishvili L
Rodriguez WE
Bauer P
Wang Y
Soni C
Lydic T
Barve S
McClain C
Maldonado C
author_facet Gobejishvili L
Rodriguez WE
Bauer P
Wang Y
Soni C
Lydic T
Barve S
McClain C
Maldonado C
author_sort Gobejishvili L
collection DOAJ
description Leila Gobejishvili,1 Walter E Rodriguez,1 Philip Bauer,2 Yali Wang,1 Chirag Soni,2 Todd Lydic,3 Shirish Barve,1 Craig McClain,1 Claudio Maldonado4 1Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; 2Endoprotech, Inc., Louisville, KY, USA; 3Lipidomics Center, Michigan State University, East Lansing, MI, USA; 4Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USACorrespondence: Claudio Maldonado, Department of Physiology, School of Medicine, University of Louisville, 500 S. Preston Street, HSC A-1115, Louisville, KY, 40292, USA, Tel +1 (502) 852-1078, Email claudio.maldonado@louisville.edu Leila Gobejishvili, Department of Medicine, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR 516, Louisville, KY, 40202, USA, Tel +1 (502) 852-0361, Fax +1 (502) 852-8927, Email l0gobe01@louisville.eduIntroduction: The phosphodiesterase 4 (PDE4) inhibitor, rolipram, has beneficial effects on tissue inflammation, injury and fibrosis, including in the liver. Since rolipram elicits significant CNS side-effects in humans (ie, nausea and emesis), our group developed a fusogenic lipid vesicle (FLV) drug delivery system that targets the liver to avoid adverse events. We evaluated whether this novel liposomal rolipram formulation reduces emesis.Methods: C57Bl/6J male mice were used to compare the effect of three doses of free and FLV-delivered (FLVs-Rol) rolipram in a behavioral correlate model of rolipram-induced emesis. Tissue rolipram and rolipram metabolite levels were measured using LC-MS/MS. The effect of FLVs-Rol on brain and liver PDE4 activities was evaluated.Results: Low and moderate doses of free rolipram significantly reduced anesthesia duration, while the same doses of FLVs-Rol had no effect. However, the onset and duration of adverse effects (shortening of anesthesia period) elicited by a high dose of rolipram was not ameliorated by FLVs-Rol. Post-mortem analysis of brain and liver tissues demonstrated that FLVs affected the rate of rolipram uptake by liver and brain. Lastly, administration of a moderate dose of FLVs-Rol attenuated endotoxin induced PDE4 activity in the liver with negligible effect on the brain.Discussion: The findings that the low and moderate doses of FLVs-Rol did not shorten the anesthesia duration time suggest that FLV delivery prevented critical levels of drug from crossing the blood-brain barrier (BBB) to elicit CNS side-effects. However, the inability of high dose FLVs-Rol to prevent CNS side-effects indicates that there was sufficient unencapsulated rolipram to cross the BBB and shorten anesthesia duration. Notably, a moderate dose of FLVs-Rol was able to decrease PDE4 activity in the liver without affecting the brain. Taken together, FLVs-Rol has a strong potential for clinical application for the treatment of liver disease without side effects.Keywords: liposomes, rolipram, side-effects, PDE4, liver
first_indexed 2024-04-13T23:10:24Z
format Article
id doaj.art-1790d2812a114611bece55fa695dcc55
institution Directory Open Access Journal
issn 1177-8881
language English
last_indexed 2024-04-13T23:10:24Z
publishDate 2022-05-01
publisher Dove Medical Press
record_format Article
series Drug Design, Development and Therapy
spelling doaj.art-1790d2812a114611bece55fa695dcc552022-12-22T02:25:33ZengDove Medical PressDrug Design, Development and Therapy1177-88812022-05-01Volume 161301130975012Novel Liposomal Rolipram Formulation for Clinical Application to Reduce EmesisGobejishvili LRodriguez WEBauer PWang YSoni CLydic TBarve SMcClain CMaldonado CLeila Gobejishvili,1 Walter E Rodriguez,1 Philip Bauer,2 Yali Wang,1 Chirag Soni,2 Todd Lydic,3 Shirish Barve,1 Craig McClain,1 Claudio Maldonado4 1Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA; 2Endoprotech, Inc., Louisville, KY, USA; 3Lipidomics Center, Michigan State University, East Lansing, MI, USA; 4Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USACorrespondence: Claudio Maldonado, Department of Physiology, School of Medicine, University of Louisville, 500 S. Preston Street, HSC A-1115, Louisville, KY, 40292, USA, Tel +1 (502) 852-1078, Email claudio.maldonado@louisville.edu Leila Gobejishvili, Department of Medicine, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR 516, Louisville, KY, 40202, USA, Tel +1 (502) 852-0361, Fax +1 (502) 852-8927, Email l0gobe01@louisville.eduIntroduction: The phosphodiesterase 4 (PDE4) inhibitor, rolipram, has beneficial effects on tissue inflammation, injury and fibrosis, including in the liver. Since rolipram elicits significant CNS side-effects in humans (ie, nausea and emesis), our group developed a fusogenic lipid vesicle (FLV) drug delivery system that targets the liver to avoid adverse events. We evaluated whether this novel liposomal rolipram formulation reduces emesis.Methods: C57Bl/6J male mice were used to compare the effect of three doses of free and FLV-delivered (FLVs-Rol) rolipram in a behavioral correlate model of rolipram-induced emesis. Tissue rolipram and rolipram metabolite levels were measured using LC-MS/MS. The effect of FLVs-Rol on brain and liver PDE4 activities was evaluated.Results: Low and moderate doses of free rolipram significantly reduced anesthesia duration, while the same doses of FLVs-Rol had no effect. However, the onset and duration of adverse effects (shortening of anesthesia period) elicited by a high dose of rolipram was not ameliorated by FLVs-Rol. Post-mortem analysis of brain and liver tissues demonstrated that FLVs affected the rate of rolipram uptake by liver and brain. Lastly, administration of a moderate dose of FLVs-Rol attenuated endotoxin induced PDE4 activity in the liver with negligible effect on the brain.Discussion: The findings that the low and moderate doses of FLVs-Rol did not shorten the anesthesia duration time suggest that FLV delivery prevented critical levels of drug from crossing the blood-brain barrier (BBB) to elicit CNS side-effects. However, the inability of high dose FLVs-Rol to prevent CNS side-effects indicates that there was sufficient unencapsulated rolipram to cross the BBB and shorten anesthesia duration. Notably, a moderate dose of FLVs-Rol was able to decrease PDE4 activity in the liver without affecting the brain. Taken together, FLVs-Rol has a strong potential for clinical application for the treatment of liver disease without side effects.Keywords: liposomes, rolipram, side-effects, PDE4, liverhttps://www.dovepress.com/novel-liposomal-rolipram-formulation-for-clinical-application-to-reduc-peer-reviewed-fulltext-article-DDDTliposomesrolipramside-effectspde4liver
spellingShingle Gobejishvili L
Rodriguez WE
Bauer P
Wang Y
Soni C
Lydic T
Barve S
McClain C
Maldonado C
Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
Drug Design, Development and Therapy
liposomes
rolipram
side-effects
pde4
liver
title Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
title_full Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
title_fullStr Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
title_full_unstemmed Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
title_short Novel Liposomal Rolipram Formulation for Clinical Application to Reduce Emesis
title_sort novel liposomal rolipram formulation for clinical application to reduce emesis
topic liposomes
rolipram
side-effects
pde4
liver
url https://www.dovepress.com/novel-liposomal-rolipram-formulation-for-clinical-application-to-reduc-peer-reviewed-fulltext-article-DDDT
work_keys_str_mv AT gobejishvilil novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT rodriguezwe novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT bauerp novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT wangy novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT sonic novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT lydict novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT barves novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT mcclainc novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis
AT maldonadoc novelliposomalrolipramformulationforclinicalapplicationtoreduceemesis