A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism

<p>Despite being one of the most fundamental microstructural parameters of snow, the specific surface area (SSA) dynamics during temperature gradient metamorphism (TGM) have so far been addressed only within empirical modeling. To surpass this limitation, we propose a rigorous modeling of SSA...

Full description

Bibliographic Details
Main Authors: A. Braun, K. Fourteau, H. Löwe
Format: Article
Language:English
Published: Copernicus Publications 2024-04-01
Series:The Cryosphere
Online Access:https://tc.copernicus.org/articles/18/1653/2024/tc-18-1653-2024.pdf
_version_ 1797216346840236032
author A. Braun
A. Braun
K. Fourteau
K. Fourteau
H. Löwe
author_facet A. Braun
A. Braun
K. Fourteau
K. Fourteau
H. Löwe
author_sort A. Braun
collection DOAJ
description <p>Despite being one of the most fundamental microstructural parameters of snow, the specific surface area (SSA) dynamics during temperature gradient metamorphism (TGM) have so far been addressed only within empirical modeling. To surpass this limitation, we propose a rigorous modeling of SSA dynamics using an exact equation for the temporal evolution of the surface area, fed by pore-scale finite-element simulations of the water vapor field coupled with the temperature field on X-ray computed tomography images. The proposed methodology is derived from the first principles of physics and thus does not rely on any empirical parameter. Since the calculated evolution of the SSA is highly sensitive to fluctuations in the experimental data, we quantify the impact of these fluctuations within a stochastic error model. In our simulations, the only poorly constrained physical parameter is the condensation coefficient <span class="inline-formula"><i>α</i></span>. We address this problem by simulating the SSA evolution for a wide range of <span class="inline-formula"><i>α</i></span> values and estimate optimal values by minimizing the differences between simulations and experiments. This methodology suggests that <span class="inline-formula"><i>α</i></span> lies in the intermediate range <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup><mo>&lt;</mo><mi mathvariant="italic">α</mi><mo>&lt;</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="d0947cd230d9bb35acfd3a4929760db7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-18-1653-2024-ie00001.svg" width="80pt" height="13pt" src="tc-18-1653-2024-ie00001.png"/></svg:svg></span></span> and slightly varies between experiments. Also, our results suggest a transition of the value of <span class="inline-formula"><i>α</i></span> in one TGM experiment, which can be explained by a transition in the underlying surface morphology. Overall, we are able to reproduce very subtle variations in the SSA evolution with correlations of <span class="inline-formula"><i>R</i><sup>2</sup>=0.95</span> and <span class="inline-formula">0.99</span>, respectively, for the two TGM time series considered. Finally, our work highlights the necessity of including kinetic effects and of using realistic microstructures to comprehend the evolution of SSA during TGM.</p>
first_indexed 2024-04-24T11:44:30Z
format Article
id doaj.art-17960491c4a54abaa614dd5261e2bde6
institution Directory Open Access Journal
issn 1994-0416
1994-0424
language English
last_indexed 2024-04-24T11:44:30Z
publishDate 2024-04-01
publisher Copernicus Publications
record_format Article
series The Cryosphere
spelling doaj.art-17960491c4a54abaa614dd5261e2bde62024-04-09T11:50:07ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242024-04-01181653166810.5194/tc-18-1653-2024A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphismA. Braun0A. Braun1K. Fourteau2K. Fourteau3H. Löwe4Group Snow Physics, Research Unit Snow and Atmosphere, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandLaboratory of Cryospheric Sciences, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, SwitzerlandGroup Snow Physics, Research Unit Snow and Atmosphere, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, SwitzerlandUniversité Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Études de la Neige, Grenoble, FranceGroup Snow Physics, Research Unit Snow and Atmosphere, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland<p>Despite being one of the most fundamental microstructural parameters of snow, the specific surface area (SSA) dynamics during temperature gradient metamorphism (TGM) have so far been addressed only within empirical modeling. To surpass this limitation, we propose a rigorous modeling of SSA dynamics using an exact equation for the temporal evolution of the surface area, fed by pore-scale finite-element simulations of the water vapor field coupled with the temperature field on X-ray computed tomography images. The proposed methodology is derived from the first principles of physics and thus does not rely on any empirical parameter. Since the calculated evolution of the SSA is highly sensitive to fluctuations in the experimental data, we quantify the impact of these fluctuations within a stochastic error model. In our simulations, the only poorly constrained physical parameter is the condensation coefficient <span class="inline-formula"><i>α</i></span>. We address this problem by simulating the SSA evolution for a wide range of <span class="inline-formula"><i>α</i></span> values and estimate optimal values by minimizing the differences between simulations and experiments. This methodology suggests that <span class="inline-formula"><i>α</i></span> lies in the intermediate range <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup><mo>&lt;</mo><mi mathvariant="italic">α</mi><mo>&lt;</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="80pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="d0947cd230d9bb35acfd3a4929760db7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="tc-18-1653-2024-ie00001.svg" width="80pt" height="13pt" src="tc-18-1653-2024-ie00001.png"/></svg:svg></span></span> and slightly varies between experiments. Also, our results suggest a transition of the value of <span class="inline-formula"><i>α</i></span> in one TGM experiment, which can be explained by a transition in the underlying surface morphology. Overall, we are able to reproduce very subtle variations in the SSA evolution with correlations of <span class="inline-formula"><i>R</i><sup>2</sup>=0.95</span> and <span class="inline-formula">0.99</span>, respectively, for the two TGM time series considered. Finally, our work highlights the necessity of including kinetic effects and of using realistic microstructures to comprehend the evolution of SSA during TGM.</p>https://tc.copernicus.org/articles/18/1653/2024/tc-18-1653-2024.pdf
spellingShingle A. Braun
A. Braun
K. Fourteau
K. Fourteau
H. Löwe
A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
The Cryosphere
title A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
title_full A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
title_fullStr A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
title_full_unstemmed A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
title_short A rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
title_sort rigorous approach to the specific surface area evolution in snow during temperature gradient metamorphism
url https://tc.copernicus.org/articles/18/1653/2024/tc-18-1653-2024.pdf
work_keys_str_mv AT abraun arigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT abraun arigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT kfourteau arigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT kfourteau arigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT hlowe arigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT abraun rigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT abraun rigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT kfourteau rigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT kfourteau rigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism
AT hlowe rigorousapproachtothespecificsurfaceareaevolutioninsnowduringtemperaturegradientmetamorphism