Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility

Bibliographic Details
Main Authors: Andreas D. Meid, Alexander Gerharz, Andreas Groll
Format: Article
Language:English
Published: Wiley 2022-03-01
Series:CPT: Pharmacometrics & Systems Pharmacology
Online Access:https://doi.org/10.1002/psp4.12761
_version_ 1818285412520558592
author Andreas D. Meid
Alexander Gerharz
Andreas Groll
author_facet Andreas D. Meid
Alexander Gerharz
Andreas Groll
author_sort Andreas D. Meid
collection DOAJ
first_indexed 2024-12-13T01:08:17Z
format Article
id doaj.art-179c3bd0ad9a4fec941d1ea3d11fd5a7
institution Directory Open Access Journal
issn 2163-8306
language English
last_indexed 2024-12-13T01:08:17Z
publishDate 2022-03-01
publisher Wiley
record_format Article
series CPT: Pharmacometrics & Systems Pharmacology
spelling doaj.art-179c3bd0ad9a4fec941d1ea3d11fd5a72022-12-22T00:04:31ZengWileyCPT: Pharmacometrics & Systems Pharmacology2163-83062022-03-0111325726110.1002/psp4.12761Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibilityAndreas D. Meid0Alexander Gerharz1Andreas Groll2Department of Clinical Pharmacology and Pharmacoepidemiology University of Heidelberg Heidelberg GermanyDepartment of Statistics TU Dortmund University Dortmund GermanyDepartment of Statistics TU Dortmund University Dortmund Germanyhttps://doi.org/10.1002/psp4.12761
spellingShingle Andreas D. Meid
Alexander Gerharz
Andreas Groll
Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
CPT: Pharmacometrics & Systems Pharmacology
title Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
title_full Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
title_fullStr Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
title_full_unstemmed Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
title_short Machine learning for tumor growth inhibition: Interpretable predictive models for transparency and reproducibility
title_sort machine learning for tumor growth inhibition interpretable predictive models for transparency and reproducibility
url https://doi.org/10.1002/psp4.12761
work_keys_str_mv AT andreasdmeid machinelearningfortumorgrowthinhibitioninterpretablepredictivemodelsfortransparencyandreproducibility
AT alexandergerharz machinelearningfortumorgrowthinhibitioninterpretablepredictivemodelsfortransparencyandreproducibility
AT andreasgroll machinelearningfortumorgrowthinhibitioninterpretablepredictivemodelsfortransparencyandreproducibility