ANFIS and ANN models to predict heliostat tracking errors

The efficiency and performance of solar tower power are greatly influenced by the heliostats field. To ensure accurate tracking of reflectors often requires an evaluation of the beam reflected positions. This operation is costly time-consuming due to the number of heliostats. It is also necessary to...

Full description

Bibliographic Details
Main Authors: Marie Pascaline Sarr, Ababacar Thiam, Biram Dieng
Format: Article
Language:English
Published: Elsevier 2023-01-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023000117
Description
Summary:The efficiency and performance of solar tower power are greatly influenced by the heliostats field. To ensure accurate tracking of reflectors often requires an evaluation of the beam reflected positions. This operation is costly time-consuming due to the number of heliostats. It is also necessary to set up a fast and less expensive method able to evaluate tracking heliostat. In this paper, prediction models based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) were applied to estimate rapidly and accurately heliostat error tracking. The modeling is based on the experimental data of seven different days. The input parameters are time and day number and the output is the beam reflected position following the altitude and azimuth axes. Both techniques have been able to predict the beam reflected position. A comparison of results showed that intelligent methods recorded better performance than conventional model based on geometric errors. For ANFIS model, coefficients of correlation (R2) of 0.97 is obtained compared to that of the ANN, 0.96 and 0.92 for altitude and azimuth axes respectively. The intelligent methods may be a promising alternative for predicting heliostat beam reflected the position.
ISSN:2405-8440