A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data

<p>We consider the problem of reconstructing the number size distribution (or particle size distribution) in the atmosphere from lidar measurements of the extinction and backscattering coefficients. We assume that the number size distribution can be modeled as a superposition of log-normal dis...

Full description

Bibliographic Details
Main Authors: A. Sorrentino, A. Sannino, N. Spinelli, M. Piana, A. Boselli, V. Tontodonato, P. Castellano, X. Wang
Format: Article
Language:English
Published: Copernicus Publications 2022-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/15/149/2022/amt-15-149-2022.pdf
_version_ 1828147425827618816
author A. Sorrentino
A. Sannino
N. Spinelli
M. Piana
A. Boselli
V. Tontodonato
P. Castellano
X. Wang
author_facet A. Sorrentino
A. Sannino
N. Spinelli
M. Piana
A. Boselli
V. Tontodonato
P. Castellano
X. Wang
author_sort A. Sorrentino
collection DOAJ
description <p>We consider the problem of reconstructing the number size distribution (or particle size distribution) in the atmosphere from lidar measurements of the extinction and backscattering coefficients. We assume that the number size distribution can be modeled as a superposition of log-normal distributions, each one defined by three parameters: mode, width and height. We use a Bayesian model and a Monte Carlo algorithm to estimate these parameters. We test the developed method on synthetic data generated by distributions containing one or two modes and perturbed by Gaussian noise as well as on three datasets obtained from AERONET. We show that the proposed algorithm provides good results when the right number of modes is selected. In general, an overestimate of the number of modes provides better results than an underestimate. In all cases, the PM<span class="inline-formula"><sub>1</sub></span>, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> concentrations are reconstructed with tolerable deviations.</p>
first_indexed 2024-04-11T21:00:46Z
format Article
id doaj.art-17b58a357acb4f86b032d6e617eacfae
institution Directory Open Access Journal
issn 1867-1381
1867-8548
language English
last_indexed 2024-04-11T21:00:46Z
publishDate 2022-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Measurement Techniques
spelling doaj.art-17b58a357acb4f86b032d6e617eacfae2022-12-22T04:03:30ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482022-01-011514916410.5194/amt-15-149-2022A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar dataA. Sorrentino0A. Sannino1N. Spinelli2M. Piana3A. Boselli4V. Tontodonato5P. Castellano6X. Wang7Dipartimento di Matematica, Università di Genova, Genova, Italy​​​​​​​Dipartimento di Fisica, Università di Napoli Federico II, Napoli, ItalyDipartimento di Fisica, Università di Napoli Federico II, Napoli, ItalyDipartimento di Matematica, Università di Genova, Genova, Italy​​​​​​​CNR-IMAA, Potenza, Italy​​​​​​​ALA Srl Advanced Lidar Applications, Napoli, ItalyALA Srl Advanced Lidar Applications, Napoli, ItalyCNR-SPIN, Napoli, Italy<p>We consider the problem of reconstructing the number size distribution (or particle size distribution) in the atmosphere from lidar measurements of the extinction and backscattering coefficients. We assume that the number size distribution can be modeled as a superposition of log-normal distributions, each one defined by three parameters: mode, width and height. We use a Bayesian model and a Monte Carlo algorithm to estimate these parameters. We test the developed method on synthetic data generated by distributions containing one or two modes and perturbed by Gaussian noise as well as on three datasets obtained from AERONET. We show that the proposed algorithm provides good results when the right number of modes is selected. In general, an overestimate of the number of modes provides better results than an underestimate. In all cases, the PM<span class="inline-formula"><sub>1</sub></span>, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> concentrations are reconstructed with tolerable deviations.</p>https://amt.copernicus.org/articles/15/149/2022/amt-15-149-2022.pdf
spellingShingle A. Sorrentino
A. Sannino
N. Spinelli
M. Piana
A. Boselli
V. Tontodonato
P. Castellano
X. Wang
A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
Atmospheric Measurement Techniques
title A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
title_full A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
title_fullStr A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
title_full_unstemmed A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
title_short A Bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
title_sort bayesian parametric approach to the retrieval of the atmospheric number size distribution from lidar data
url https://amt.copernicus.org/articles/15/149/2022/amt-15-149-2022.pdf
work_keys_str_mv AT asorrentino abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT asannino abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT nspinelli abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT mpiana abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT aboselli abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT vtontodonato abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT pcastellano abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT xwang abayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT asorrentino bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT asannino bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT nspinelli bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT mpiana bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT aboselli bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT vtontodonato bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT pcastellano bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata
AT xwang bayesianparametricapproachtotheretrievaloftheatmosphericnumbersizedistributionfromlidardata