The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>

A conformally flat hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi>M</mi><mn>3</mn></msup><mo>→&...

Full description

Bibliographic Details
Main Authors: Yayun Chen, Tongzhu Li
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/6/1435
_version_ 1797610271169052672
author Yayun Chen
Tongzhu Li
author_facet Yayun Chen
Tongzhu Li
author_sort Yayun Chen
collection DOAJ
description A conformally flat hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi>M</mi><mn>3</mn></msup><mo>→</mo><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula> in the four-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula> is said to be generic if the hypersurface has three distinct principal curvatures everywhere. In this paper, we study the generic conformally flat hypersurfaces in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula> using the framework of Möbius geometry. First, we classify locally the generic conformally flat hypersurfaces with a vanishing Möbius form under the Möbius transformation group of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>. Second, we investigate the global behavior of the compact generic conformally flat hypersurfaces and give some integral formulas about the Möbius invariant of these hypersurfaces.
first_indexed 2024-03-11T06:13:02Z
format Article
id doaj.art-17c2d35697574800943351b036dd003d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T06:13:02Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-17c2d35697574800943351b036dd003d2023-11-17T12:28:34ZengMDPI AGMathematics2227-73902023-03-01116143510.3390/math11061435The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>Yayun Chen0Tongzhu Li1Department of Mathematics, Beijing Institute of Technology, Beijing 100081, ChinaDepartment of Mathematics, Beijing Institute of Technology, Beijing 100081, ChinaA conformally flat hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><msup><mi>M</mi><mn>3</mn></msup><mo>→</mo><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula> in the four-dimensional Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula> is said to be generic if the hypersurface has three distinct principal curvatures everywhere. In this paper, we study the generic conformally flat hypersurfaces in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula> using the framework of Möbius geometry. First, we classify locally the generic conformally flat hypersurfaces with a vanishing Möbius form under the Möbius transformation group of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>. Second, we investigate the global behavior of the compact generic conformally flat hypersurfaces and give some integral formulas about the Möbius invariant of these hypersurfaces.https://www.mdpi.com/2227-7390/11/6/1435generic conformally flat hypersurfaceMöbius metricMöbius formMöbius curvature
spellingShingle Yayun Chen
Tongzhu Li
The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
Mathematics
generic conformally flat hypersurface
Möbius metric
Möbius form
Möbius curvature
title The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_full The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_fullStr The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_full_unstemmed The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_short The Global Property of Generic Conformally Flat Hypersurfaces in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mn>4</mn></msup></semantics></math></inline-formula>
title_sort global property of generic conformally flat hypersurfaces in inline formula math display inline semantics msup mi mathvariant double struck r mi mn 4 mn msup semantics math inline formula
topic generic conformally flat hypersurface
Möbius metric
Möbius form
Möbius curvature
url https://www.mdpi.com/2227-7390/11/6/1435
work_keys_str_mv AT yayunchen theglobalpropertyofgenericconformallyflathypersurfacesininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn4mnmsupsemanticsmathinlineformula
AT tongzhuli theglobalpropertyofgenericconformallyflathypersurfacesininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn4mnmsupsemanticsmathinlineformula
AT yayunchen globalpropertyofgenericconformallyflathypersurfacesininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn4mnmsupsemanticsmathinlineformula
AT tongzhuli globalpropertyofgenericconformallyflathypersurfacesininlineformulamathdisplayinlinesemanticsmsupmimathvariantdoublestruckrmimn4mnmsupsemanticsmathinlineformula