Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions
Under consideration is the damped semilinear wave equation $$ u_{tt}+u_t-\Delta u+u+f(u)=0 $$ in a bounded domain $\Omega$ in $\mathbb{R}^3$ subject to an acoustic boundary condition with a singular perturbation, which we term "massless acoustic perturbation", $$ \varepsilon\delta_...
Autor principal: | Joseph L. Shomberg |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
Texas State University
2018-08-01
|
Col·lecció: | Electronic Journal of Differential Equations |
Matèries: | |
Accés en línia: | http://ejde.math.txstate.edu/Volumes/2018/152/abstr.html |
Ítems similars
-
On the upper semicontinuity of global attractors for damped wave equations
per: Joseph L. Shomberg
Publicat: (2017-09-01) -
Robust exponential attractors for singularly perturbed phase-field type equations
per: Alain Miranville, et al.
Publicat: (2002-07-01) -
Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings
per: Gongwei Liu, et al.
Publicat: (2022-07-01) -
Attractors and their structure for semilinear wave equations with nonlinear boundary dissipation
per: Irena Lasiecka, et al.
Publicat: (2004-07-01) -
Fitted numerical method for singularly perturbed semilinear three-point boundary value problem
per: M. Gebeyehu, et al.
Publicat: (2022-03-01)