Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions
Under consideration is the damped semilinear wave equation $$ u_{tt}+u_t-\Delta u+u+f(u)=0 $$ in a bounded domain $\Omega$ in $\mathbb{R}^3$ subject to an acoustic boundary condition with a singular perturbation, which we term "massless acoustic perturbation", $$ \varepsilon\delta_...
Autor principal: | Joseph L. Shomberg |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
Texas State University
2018-08-01
|
Colección: | Electronic Journal of Differential Equations |
Materias: | |
Acceso en línea: | http://ejde.math.txstate.edu/Volumes/2018/152/abstr.html |
Ejemplares similares
-
On the upper semicontinuity of global attractors for damped wave equations
por: Joseph L. Shomberg
Publicado: (2017-09-01) -
Robust exponential attractors for singularly perturbed phase-field type equations
por: Alain Miranville, et al.
Publicado: (2002-07-01) -
Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings
por: Gongwei Liu, et al.
Publicado: (2022-07-01) -
Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation
por: Yonghai Wang, et al.
Publicado: (2021-06-01) -
Existence and upper semicontinuity of global attractors for neural fields in an unbounded domain
por: Severino Horacio Da Silva
Publicado: (2010-09-01)